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Abstract: This note introduces the notion of dependence among intervals to account for observed 
or theoretical constraints on the relationships among uncertain inputs in mathematical 
calculations.  We define dependence as any restriction on the possible pairings of values within 
respective intervals and define nondependence as the degenerate case of no restrictions (which we 
carefully distinguish from independence in probability theory).  Traditional interval calculations 
assume nondependence, but alternative assumptions are possible, including several which might 
be practical in engineering settings that would lead to tighter enclosures on arithmetic functions 
of intervals.  We give best possible formulas for addition of intervals under several of these 
dependencies.  We also suggest some potentially useful models of correlation, which are single-
parameter families of dependencies, often ranging from the identity dependence (u=v) 
representing maximal correlation, through nondependence, to opposite dependence (1�u=v) 
representing maximally negative correlation. 
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1. Introduction 
 
Interval analysis has an inadequate model of dependence between variables.  Because of this 
deficiency, many analysts discount the utility of interval arithmetic in propagating uncertainty 
through mathematical expressions because it does not account for natural dependencies that can 
occur between input values.  Many reject interval methods and appeal instead to probability 
theory because it provides a well developed model of dependence in terms of correlations and the 
general theory of copulas (Nelsen 1999).  This perceived advantage of probabilistic over interval 
methods is undeserved, however, because interval analysis could also offer a model of 
dependence, and it would be considerably simpler and perhaps more workable than that required 
for event probabilities or random numbers. 
 
There are two uses of a model of dependence among intervals.  The first is to account for 
dependencies that exist between distinct inputs.  Such dependencies can be implied by the 
physical or biological mechanisms governing the underlying system.  For instance, if both the 
size and mass of a component are interval inputs in a calculation, it is likely there is a connection 
between these two inputs such that large values of one are associated with large values of the 
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other and that precludes certain contrary combinations of values within their intervals.  For other 
variables there might be reasons why large values of one cannot co-occur with large values of 
another.  Dependencies such as these might be deduced from the mathematical relationships 
between the variables.  They might alternatively be evidenced by empirical information, or 
simply asserted a priori by the analyst.  In any case, it is legitimate and essential to take account 
of these dependencies if doing so tightens the interval outputs of analysis. 
 
Although not a primary focus of this note, the second use of a model of dependence among 
intervals is as underpinning for a strategy to address the repeated parameter issue (also known as 
the “dependence” issue) in which a single interval input appears multiple times within a 
mathematical expression.  For example, the terms in the expression A � A2 are dependent in that 
knowing A’s value tells us the value of A2 exactly.  Such dependencies arise because of 
mathematical identities or repeated variables in expressions, rather than empirical dependencies 
discussed above.  One could argue that one kind of dependence is a special case of the other kind 
of dependence, and they are clearly closely intertwined. 
 
 
 

2. Dependence between intervals 
 
So what is dependence between uncertain numbers characterized by intervals?  We define 
dependence as any restriction on the possible pairings of the uncertain numbers.  An interval 
dependence relation D is a subset of the unit square U = [0,1] � [0,1] = { (u,v) : u � [0,1], v � 
[0,1] } such that there exists in the relation at least one pair (u,v) for every value of u and v.  That 
is, D � U is a dependence relation if and only if, for any u � [0,1], there exists some pair (u,v) � 
D for some v � [0,1], and, likewise, for any v � [0,1], there is a pair (u,v) � D for some u � [0,1].  
Consider two intervals A = [a1, a2] and B = [b1, b2].  We say that A and B are dependent according 
to a dependence relation D if  
 
f(A, B) = { c : c = f(a, b), where a = u (a2 – a1) + a1, b = v (b2 – b1) + b1, and (u,v) � D } 
 
for all binary functions f.  In this case, A and B are said to have the dependence D.  Any pair of 
values (a,b) is called a possible pair from the intervals A and B if a � A, b � B, and ((a – a1)/(a2 – 
a1), (b – b1)/(b2 – b1)) � D. 
 
We use � to denote the set of all such dependence relations, of which U � � is a privileged 
special case.  If a dependence relation is all of U, it is called the noninteractive dependence 
relation or, more simply, the all-pairs relation.  It is the largest possible dependence in that it 
encloses all other possible dependence relations.  We can say that intervals having this degenerate 
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relation are nondependent.  (We conscientiously refrain from calling such intervals ‘independent’ 
because this term already has a firmly entrenched meaning in probability theory that is not 
equivalent to—and indeed is quite different from—nondependence.) 
 
If there is only one pair in the set for each value of u and only one pair for each v, it is called a 
one-pair dependence relation.  There are two special cases of one-pair relations that are 
especially important.  The first is the identity relation P = { (u,v) : u = v, u � [0,1], v � [0,1] }.  
This is the case of perfect dependence between the two intervals.  Low values of one interval are 
perfectly paired with low values of the other, and high values of one are paired with high values 
of the other.  The second special case of a one-pair relation is the opposite relation O = { (u,v) : 
1�u = v, u � [0,1], v � [0,1] } which reverses the association so high values of one variable are 
paired with low values of the other.  Both of these special cases are monotone relations, but not 
all one-pair relations are so well behaved.  Even if the value within A perfectly determines the 
associated value within B and vice versa, their dependence may still be very complicated.  The 
notion of “shuffles” (Nelsen 1999) from probability theory generalizes to interval dependence. 
 
Between the degenerate all-pairs dependence relation and various possible one-pair dependence 
relations there is a huge variety of dependence relations.  Indeed, this variety is infinite-
dimensional, although it is vastly less complex than the analogous diversity in copulas modeling 
dependence between random numbers in probability theory.  The key to developing practical 
strategies for handling dependence among intervals is to define classes or families of dependence 
that are appropriate models of the kinds of associations commonly encountered.  The next section 
introduces some candidates. 
 
 
 

3. Correlation models 
 
A complete model of correlation is any map � from [�1,+1] to � (the set of all bivariate 
dependence relations) such that �(�1) = O, �(0) = U, and �(1) = P.  There are infinitely many 
such maps (just as there are in the analogous probability theory).  Nevertheless, it is useful to 
identify some models of correlation that might be workable in practical engineering settings.  For 
instance, it might be convenient to define the family of dependence relations depicted in Figure 1.  
The figure shows eleven dependence relations, ranging from O at the far left to P at the far right.  
Each dependence relation is depicted as an area in black within the unit square.  The abscissas are 
the u values and the ordinates are the v values. 
 



4 Scott Ferson and Vladik Kreinovich 

REC 2006 – Ferson and Kreinovich 

 r = �1 r = 0 r = +1 

 
Figure 1.  A complete model of correlation between intervals. 

 
In this family, there is a dependence relation for each value of the correlation r from negative one 
through zero and on to positive one.  In this case, the dependence relation for a given r is defined 
as  
 
D(r) = { (u,v) : max(0, �u�r, u�1+r) � v � min(1, u+1�r, �u+2+r), u � [0,1], v � [0,1] }. 
 
The signal characteristic of the model of correlation represented by this parameterized family of 
dependence relations is the way in which pairs are excluded that would contradict the assertion of 
correlation at magnitude r:  the counterindicated corners of the dependence relation are shaved 
away. 
 
There are actually many complete models of correlation that are possible.  For example, Figure 2 
shows four different families, each of which smoothly morph from the opposite dependence O for 
a correlation r of �1 though the all-pairs dependence at correlation zero to the perfect dependence 
P at correlation +1.  These families are composed of relations having rhomboidal shapes with 
straight-line edges.  Other families could be devised out of other curved shapes as well. 
 
 r = �1 r = 0 r = +1 

 
Figure 2.  Four alternative complete models of correlation. 
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A non-complete model of correlation would be a map from a proper subset of [�1,+1] to �, or a 
map from [�1,+1] to � that didn’t send �1, 0 and +1 to O, U and P respectively.  One non-
complete model of correlation that will likely be very useful in practical problems is the ellipse 
model (Chernousko 1988, 1994; Kreinovich et al. 2005, 2006).  This model maps all of the range 
[�1,+1] and it goes from O and P, but its dependence for zero correlation is not U.  Instead, it is 
the inscribed circle E0 = {(u,v) : (u�½)2 + (v�½)2 � ¼}.  As the correlation coefficient varies from 
zero to +1, the dependence relation is a rotated ellipse inscribed within U.  In the limit, as the 
correlation reaches +1, it becomes a degenerate rotated ellipse equivalent to the perfect 
dependence relation P.  Likewise the negative correlations go from the circle to the opposite 
dependence O.  This family of ellipses is depicted in Figure 3.  It is parameterized by the point u* 
of the ellipse’s tangency with the u-axis (where v = 0).  Because this point ranges over [0,1], we 
can define another correlation index r = 1 � 2u*, ranging over [�1,+1]. 
 
 r = �1 r = 0 r = +1 

 
Figure 3.  Elliptic family of dependence relations. 

 
Given an elliptic correlation r, the dependence relation is the interior of the ellipse E(r) � U, 
which is tangent to the u-axis at u* = (1�r)/2.  This dependence relation is 
 
E(r) = {(u,v) : 4((u+v�1)2�2(1+r)(u�½)(v�½))/(1�r2) � 1, u � [0,1], v � [0,1]}.  
 
Chernousko (1988, 1994) and Kreinovich et al. (2005, 2006) considered such ellipses for 
modeling dependence among intervals.  Kreinovich et al. (2006) reviewed the use of an elliptic 
model of interval dependence in quadratic response surface models. 
 
There are many, many other dependence families that might be useful.  When, for example, an 
interval expression involves repeated subexpressions inducing a mathematical dependence, the 
relevant family of dependence relations represents the mathematical relationship.  Consider, for 
instance, intervals A and A2.  Depending on the numerical values within A, their dependence must 
be an arc of a parabola and might be one of the dependence relations depicted in Figure 4.   
 
 r = �1 r = 0 r = +1 

 
Figure 4.  Parabolic family of dependence relations. 



6 Scott Ferson and Vladik Kreinovich 

REC 2006 – Ferson and Kreinovich 

 
These dependencies can be called the parabolic family of dependence relations.  A 
parameterization of the family is  
 
Q(r) = { (u,v) : ((u � �)2 � q) / (max(�2, (1 � �)2) � q) = v, u � [0,1], v � [0,1] }. 
 
where � = tan(��r/2) + ½ is the location on the u-axis of the parabola’s minimum, and q is zero if 
0 � � � 1, or min(�2, (1��)2) otherwise.  Some of these dependencies are one-pair relations (when 
they represent only one branch of the parabola), in which case calculations may be relatively 
easy, but this is not always so.  Because the dependence relation is scaled on the unit square, this 
family of dependences can be parameterized by a single-dimensional scalar value that depends on 
whether the interval A straddles zero or not. 
 
In principle, other intervals could have parabolic dependence as well.  For instance, the interval B 
= [4,11] could not be a square of the interval A = [3,5] because their ranges would be inconsistent, 
but these two intervals could have a parabolic dependence if the pairings of a � A and b � B were 
constrained so that ((a � 3)/2, (b � 4)/7) � Q(r) for some r as depicted in Figure 4. 
 
 
 

4. Arithmetic operations under specified dependence 
 
Accounting for the dependence between intervals can improve the enclosures that can be 
computed for arithmetic expressions that involve them, and the numerical results can be 
considerably tighter than would be obtained by applying the default methods of interval 
arithmetic that do not consider dependence.  The table below gives formulas for the sum of A = 
[a1, a2] and B = [b1, b2] under a variety of dependence relations between them.  On the left side of 
the table are given the name of the dependence relation, a graphical depiction of its shape and the 
constraints that define it (in terms of u and v, which are each implicitly assumed to lie within 
[0,1]).  On the right side of the table are formulas to compute best-possible bounds on the sum 
A+B.  Some of the formulas involve the envelope function env(x,y) = [min(x, y), max(x, y)], and 
the proportional component function w([x1,x2], p) which is p (x2 � x1) + x1, or just x1 if p is less 
than zero, or x2 if p is greater than one. 
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Dependence Addition formula 
P (perfect) 

 
u = v 

[a1+b1, a2+b2] 

O (opposite) 

 
1 � u = v 

env(a1+b2, a2+b1) 

D(r) (correlated) 

,    
max(�u�r,u�1+r)�v� 
min(u+1�r,�u+2+r) 

[env(w(A, �r)+b1, a1+w(B,�r)), env(a2+w(B,1+r),w(A,1+r)+b2)] 

E(r) (elliptic) 

,  
4((u+v�1)2�2(1+r) 
(u�½)(v�½))/(1�r2)�1 

env(p�q�, p�q+, �p+q+, �p+q�)+(x1+x2+y1+y2)/2, where 
                         _________________________________________________________________________                                                            ______________________________________________ 

p = �4z/(((y2�4xz)/(y�2z))2�y2+4xz),   q� = yp	�y2p2�4z(xp2�1))/2z, 
x = 4/(a2�a1)2(1�r2),   y = �8/(a2�a1)(b2�b1)(1�r2),   z = 4/(b2�b1)2(1�r2) 

Upper, left 

 
u � v 

[a1+b1, a2+b2] 

Lower, left 

 
1 � u 
 v 

env(a2+b1, env(a1+b2, a1+b1)) 

Upper, right 

 
1 � u � v 

env(a2+b1, env(a1+b2, a2+b2)) 

Lower, right 

 
u 
 v 

[a1+b1, a2+b2] 

Diamond 

 
|u � ½| + |v � ½| � ½ 

[env(a1+w(B,½), w(A,½)+b1), env(a2+w(B,½), w(A,½)+b2)] 
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U (nondependent) 

 
(u,v) 

[a1+b1, a2+b2] 

 
This and comparable tables for other arithmetic operations such as subtraction, multiplication, 
division, minimum, maximum, powers, etc., together would constitute an extension to naïve 
interval arithmetic that can begin to account for dependence between inputs.   
 
The table above gives formulas for single arithmetic sums.  For example, suppose the dependence 
relation between A = [0,1] and B = [1,11] is of the form D(r = �0.5) as depicted in Figure 1, then 
the sum A + B is surely within [env(w(A, �r)+b1, a1+w(B,�r)), env(a2+w(B,1+r),w(A,1+r)+b2)] = 
[env(w([0,1], 0.5)+1, 0+w([1,11], 0.5)), env(1+w([1,11],1�0.5),w([0,1],1�0.5)+11)] = 
[env(0.5+1, 0+6), env(1+6, 0.5+11)] = [[1.5,6], [7,11.5]] = [1.5, 11.5].  This interval is an 
improvement to both bounds over [1,12] obtained by standard interval analysis that does not 
consider their dependence.  The bounds accounting for this kind of dependence will be tighter 
than [a1+b1, a2+b2] whenever r is less than zero.  Another example involves a special case of the 
D(r) dependence family which is the opposite dependence relation O = D(�1).  If A and B have 
this dependence, then their sum A+B is sure to be within [2,11].  The tighter result arises in this 
case because the possible pairs of values from the two intervals are restricted to single 
combinations: 
 
a�A  b�B  a+b 
 

0 11 11, . . . . . . . . . 
0.1 10 10.1, . . . . . . . . . 
0.2 9 9.2, . . . . . . . . . 
0.3 8 8.3, . . . . . . . . . 
0.8 3 3.8, . . . . . . . . . 
0.9 2 2.9, . . . . . . . . . 
1 1 2. 
 
For this reason, the formula for addition under opposite dependence simplifies to env(a1+b2, 
a2+b1) as shown in the table. 
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There is an important caveat about the difficulty of the deriving formulas for arithmetic functions 
for different dependence relations.  Monotonicity of the dependence relation does not ensure that 
the bounds on an arithmetic function can be found by testing two endpoints.  Consider bounding 
the addition of intervals A = [3,5] and B = [4,11] that have a parabolic dependence defined by the 
constraint (u � 1)2 = v.  This corresponds to � = 1, q = 0, and r = �2 atan(½)/� � �0.295 and is the 
left branch of a parabola, so the dependence is monotone.  (It is depicted as the decreasing curve 
in the third graph from the left in Figure 4.)  The endpoints of the dependence relation might 
seem to suggest that the bounds on the sum would be a+b = 3+11 = 14 and a+b = 5+4 = 9.  But 
the minimal value of the sum is actually obtained from the combination of a = 45/7 with b = 41/7, 
which is 86/7 � 8.857.  The values correspond to u = 6/7 and v = 1/49.  This example shows that 
even when the dependence is a one-pair relation that is a monotone function, even the simplest 
arithmetic function, addition, cannot be evaluated by enveloping the results at the endpoints.  
Inspection of the endpoints or corners of the dependence relation only generally suffices to find 
the bounds on the arithmetic function if the edges of the dependence relation are straight lines and 
the arithmetic function is addition. 
 
Accounting for dependence can sometimes lead to substantial numerical improvements over 
interval calculations that make no account of dependence.  Although they are generally modest 
for addition, they can be large for other mathematical operations.  For instance, if A = [0,1] and B 
= [1,11] have the opposite dependence relation O, the range of their product A�B is [0,3.025], 
which is only a third of the width of the interval [0,11] obtained by the standard calculation. 
 
 
 

5. Uncertainty about the dependence 
 
Specifying the dependence relations between input intervals is the prerogative and responsibility 
of the analyst.  They should represent available information about constraints between the inputs.  
Because the specification of such dependencies is a matter of engineering judgment or empirical 
evidence, there may be uncertainty about how it should be done.  In particular, for instance, one 
may not be able to ascribe a precise value to a correlation coefficient r.  In such cases, it might be 
reasonable to use an interval to characterize r.  The bounds on an arithmetic function of intervals 
in this case can be found by taking the union (or convex hull) of bounds obtained under each 
possible correlation coefficient within the interval. 
 
When one does not know anything about the dependence at all, the all-pairs dependence relation 
we call nondependence should be used.  This reduces all arithmetic calculations to the traditional 
interval formulas.  This choice allows an analyst to compute conservative answers that enclose all 
possible results.  Such a simple strategy is not available in probability theory.  Assuming 
independence (or, indeed, any dependence) between random variables would not allow one to 
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find the bounds on an arithmetic function when their dependence is unknown.  To do this, one 
must resort to computing the Fréchet convolutions (Ferson et al. 2004).  This difference shows 
that nondependence is not really analogous to independence as it is recognized by probabilists.  
Although interval researchers often refer to nondependence as independence, and nondependence 
has sometimes been considered a kind of independence (Couso et al. 2000; cf. Ferson et al. 2004), 
we think that they are such distinct ideas that special care should be made to distinguish between 
them. 
 
 
 

6. Multivariate dependence relations 
 
So far, we have discussed only bivariate dependence relations, but there are multivariate 
generalizations as well.  For example, D3 � [0,1]�[0,1]�[0,1] is a trivariate dependence relation if 
it contains at least one triple for every marginal value.  Likewise, Dk � [0,1]k is a k-dimensional 
dependence relation if it contains at least one element for every marginal value.  We can denote 
the set of all possible k-dimensional dependence relations as �k.  We have been calling �2 simply 
�.  There is a k-dimensional generalization of P, but not of O. 
 
The problem of accounting for dependencies among intervals in complex mathematical 
expressions may be much more difficult than it is for the binary operations considered in this 
note.  Strategies for conveniently calculating best possible bounds await development.  It may be 
difficult to properly handle such calculations as a sequence of binary operations on intervals.  For 
example, suppose A = [2,4], B = [4,7], and C = [3,9], where A and C have the opposite 
dependence relation O, and that the mathematical expression to be evaluated is AB+C.  
Approached as a composition of binary operations, the calculation would need to evaluate AB 
first and only then the sum.  However, the information about the dependence between A and C is 
inaccessible once the multiplication occurs.  What does dependence information about two 
variables imply about the dependence between functions of these variables?  Simple simulations 
show that the best possible bounds on the function AB+C given the opposite dependence between 
A and C are [17,31].  This interval can be obtained by assuming opposite dependence between C 
and the product AB, but it is not clear that assumptions like this are always permissible, or, in 
general, what theory governs dependence in interval calculations. 
 
 
 

7. Conclusions 
 
This paper has introduced the notion of dependence within interval calculations.  Dependence is 
defined to be any restriction on the possible pairings of values from the respective intervals.  Such 



11 Modeling Correlation and Dependence Among Intervals 

restrictions can be modeled as subsets of the unit square, which are relations (rather than 
functions) between the margins of a multivariate interval.  As copulas abstract the notion of 
dependence out of joint distributions in probability theory, these structures extract the dependence 
out of multivariate intervals. 
 
We have derived some exemplary formulas for bounding the results of interval addition under a 
handful of possible dependence relations, but the general computational problem of accounting 
for dependencies among intervals in arbitrary interval computations remains largely unstudied.  
Dependence information about two interval variables does not necessarily imply the dependence 
between functions of these variables.  Further work is necessary to develop and implement 
convenient algorithms to enable routine calculations that take account of dependence among 
intervals.  Further work is also needed to explore the role that conditionalization might play in the 
context of interval dependence. 
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