
Applications of fast and accurate summation in computational

geometry

Stef Graillat (graillat@univ-perp.fr)
Équipe DALI, Laboratoire LP2A, Université de Perpignan Via Domitia, 52, avenue Paul Alduy,

F-66860 Perpignan Cedex, France

Nicolas Louvet (nicolas.louvet@univ-perp.fr)
Équipe DALI, Laboratoire LP2A, Université de Perpignan Via Domitia, 52, avenue Paul Alduy,

F-66860 Perpignan Cedex, France

January 14, 2006

Abstract. The aim of the paper is to provide fast and accurate algorithms for computing determi-
nants and robust geometric predicates used in computational geometry. We use a recent algorithm
given by Ogita, Rump and Oishi (Ogita et al., 2005) that computes accurately the sum of n floating
point numbers with a valid error bound. We use this error bound to provide an adaptive algorithm
that computes determinants up to a given relative accuracy. We apply this algorithm to computed
robust geometric predicates and more particularly the 3D orientation predicate.

Keywords: accurate summation, finite precision, floating point arithmetic, determinant, compu-
tational geometry, robust geometry predicate

AMS Subject Classification: 15-04, 65G99, 65G50, 65-04

1. Introduction

Floating point summation is one of the most basic operation in scientific computing, and many
algorithms have been developed to accurately perform it in finite precision arithmetic. A good
survey of these algorithms is presented in chapter 4 of the book (Higham, 2002).

Algorithms that make decisions based on geometric test such as determining which side of a
line a point falls on, often fail due to roundoff error. A solution to answer these problems is to
use software implementations of exact arithmetic often at great expense. Improving the speed of
correct geometric computation has received recent attention (Avnaim et al., 1997; Brönnimann
and Yvinec, 2000; Krishnan et al., 2001), but the proposals take integer or rational inputs of small
precision. These methods are not usable for floating point inputs.

In such cases, a possible way to improve the accuracy is to increase the working precision. For this
purpose, some multiprecision libraries have been developed and used in computational geometry.
One can divide those libraries into three categories.

c© 2006 by authors. Printed in USA.

REC 2006 - Stef Graillat and Nicolas Louvet

2 Stef Graillat and Nicolas Louvet

− Arbitrary precision library using a multiple-digit format where a number is expressed as
a sequence of digits coupled with a single exponent. Examples of this format are Bailey’s
MPFUN (Bailey, 1995), Brent’s MP (Brent, 1978) or MPFR (MPFR, 2005).

− Arbitrary precision library using a multiple-component format where a number is expressed as
unevaluated sums of ordinary floating point words. Examples of this format are Priest (Priest,
1992) and Shewchuk (Shewchuk, 1997).

− Extended fixed precision library using the multiple-component format but with a limited
number of components. Examples of this format are Bailey’s double-double (Bailey, 2001)
(double-double numbers are represented as an unevaluated sum of a leading double and a
trailing double) and quad-double (Hida et al., 2001) (quad-double numbers are represented as
an unevaluated sum of four IEEE doubles).

Shewchuk (Shewchuk, 1997) uses an arbitrary precision library to obtain fast C implementation
of four geometric predicates, the 2D and 3D orientation and incircle tests. The inputs are single or
double precision floating point numbers. The speed of these algorithms is due to two features :

1. fast algorithms for arbitrary precision arithmetic, and

2. adaptive implementation; the running time depends on the degree of uncertainty of the result.

Recently, Demmel and Hida presented algorithms using a wider accumulator (Demmel and Hida,
2004). Floating point numbers pi, 1 ≤ i ≤ n, given in working precision with f bits in the mantissa
are added in an extra-precise accumulator with F bits, F > f . Some algorithms are presented with
and without sorting the input data. The authors give a detailed analysis of the accuracy of the
computed result depending on f ,F and the number of summands.

Those algorithms bear one or more of the following disadvantages.

− Sorting of input data is necessary, either by absolute value or, by exponent,

− Besides working precision, some extra (higher) precision is necessary,

− Access to mantissa and/or exponent is necessary.

Each of those properties can slow down the performances significantly and restrict application
to specific computer architectures or compilers.

In this paper, we use recent algorithms from Ogita, Rump and Oishi (Ogita et al., 2005)
to provide fast and accurate algorithms that compute determinants of matrices and geometric
predicates. The advantages of these algorithms is that they use one working precision still being
adaptive. These algorithms stop when the computed result has the wanted relative error. Otherwise,
the computation continue to increase the accuracy of the result using the same working precision.
Contrary to Demmel and Hida (Demmel and Hida, 2004), we do not need extra-precise floating
point format and contrary to Shewchuk (Shewchuk, 1997), we do not need renormalizations that
slow down the running time performances.

REC 2006 - Stef Graillat and Nicolas Louvet

Applications of fast and accurate summation in computational geometry 3

The paper is organized as follows. In Section 2, we present basic notations used in the rest of
the paper and in particular for floating point arithmetic. In Section 3, we recall the so-called error-
free transformations introduced by Ogita, Rump and Oishi (Ogita et al., 2005). In Section 4, we
present the summation algorithm of Ogita, Rump and Oishi presented in (Ogita et al., 2005). They
designed accurate and fast algorithms to compute the sum of floating point number. Section 3
and Section 4 borrow heavily from Ogita, Rump and Oishi (Ogita et al., 2005). In Section 5,
we present applications of those algorithms for computing determinant of matrices and robust
geometric predicates used in computational geometry.

2. Notations

Throughout the paper, we assume a floating point arithmetic adhering to IEEE 754 floating point
standard (IEEE Computer Society, 1985). We do not address issues of overflow and underflow. The
set of floating point numbers is denoted by F, and the relative rounding error by eps. For IEEE
754 double precision we have eps = 2−53.

We denote by fl(·) the result of a floating point computation, where all operations inside
parentheses are done in floating point working precision. Floating point operations in IEEE 754
satisfy (Higham, 2002)

fl(a ◦ b) = (a ◦ b)(1 + ε) for ◦ = {+,−, ·, /} and |ε| ≤ eps.

This implies that

|a ◦ b− fl(a ◦ b)| ≤ eps|a ◦ b| and |a ◦ b− fl(a ◦ b)| ≤ eps|fl(a ◦ b)| for ◦ = {+,−, ·, /}. (1)

One can notice that a ◦ b ∈ R and fl(a ◦ b) ∈ F but in general we do not have a ◦ b ∈ F. It is known
that for the basic operations +,−, ·, the approximation error of a floating point operation is still a
floating point number (see for example (Dekker, 1971)):

x = fl(a± b) ⇒ a± b = x + y with y ∈ F
x = fl(a · b) ⇒ a · b = x + y with y ∈ F (2)

These are error-free transformations of the pair (a, b) into the pair (x, y).
We use standard notation for error estimations. The quantities γn are defined as usual (Higham,

2002) by
γn :=

neps

1− neps
for n ∈ N.

3. Error-free transformations

Fortunately, the quantities x and y in (2) can be computed exactly in floating point arithmetic.
For the algorithms, we use Matlab-like notations. For addition, we can use the following algorithm
by Knuth (Knuth, 1998, Thm B. p.236).

REC 2006 - Stef Graillat and Nicolas Louvet

4 Stef Graillat and Nicolas Louvet

ALGORITHM 1 (Knuth (Knuth, 1998)). Error-free transformation of the sum of two floating
point numbers.

function [x, y] = TwoSum(a, b)
x = fl(a + b)
z = fl(x− a)
y = fl((a− (x− z)) + (b− z))

Another algorithm to compute an error-free transformation is the following algorithm from
Dekker (Dekker, 1971). The drawback of this algorithm is that we have x + y = a + b if |a| ≥ |b|.

ALGORITHM 2 (Dekker (Dekker, 1971)). Error-free transformation of the sum of two floating
point numbers.

function [x, y] = FastTwoSum(a, b)
x = fl(a + b)
y = fl((a− x) + b)

For the error-free transformation of a product, we first need to split the input argument into
two parts. Let p be given by eps = 2−p and define s = dp/2e. For example, if the working precision
is IEEE 754 double precision, then p = 53 and s = 27. The following algorithm by Dekker (Dekker,
1971) splits a floating point number a ∈ F into two parts x and y such that

a = x + y and x and y nonoverlapping with |y| ≤ |x|.

ALGORITHM 3 (Dekker (Dekker, 1971)). Error-free split of a floating point number into two
parts.

function [x, y] = Split(a, b)
factor = 2s + 1
c = fl(factor · a)
x = fl(c− (c− a))
y = fl(a− x)

With this function, an algorithm from Veltkamp (see (Dekker, 1971)) enables to compute an
error-free transformation for the product of two floating point numbers. This algorithm returns two
floating point numbers x and y such that

a · b = x + y with x = fl(a · b).

ALGORITHM 4 (Veltkamp (Dekker, 1971)). Error-free transformation of the product of two float-
ing point numbers.

function [x, y] = TwoProduct(a, b)
x = fl(a · b)
[a1, a2] = Split(a)
[b1, b2] = Split(b)
y = fl(a2 · b2 − (((x− a1 · b1)− a2 · b1)− a1 · b2))

REC 2006 - Stef Graillat and Nicolas Louvet

Applications of fast and accurate summation in computational geometry 5

The following theorem summarizes the properties of algorithms TwoSum and TwoProduct.

THEOREM 1 (Ogita, Rump and Oishi (Ogita et al., 2005, Thm. 3.4)). Let a, b ∈ F and let x, y ∈
F such that [x, y] = TwoSum(a, b) (Algorithm 1). Then,

a + b = x + y, x = fl(a + b), |y| ≤ eps|x|, |y| ≤ eps|a + b|. (3)

Let a, b ∈ F and let x, y ∈ F such that [x, y] = TwoProduct(a, b) (Algorithm 4). Then,

a · b = x + y, x = fl(a · b), |y| ≤ eps|x|, |y| ≤ eps|a · b|. (4)

4. Summation

Let floating point numbers pi ∈ F, 1 ≤ i ≤ n, be given. The aim of this section is to present
algorithms from Ogita, Rump and Oishi (Ogita et al., 2005) that compute a good approximation
of the sum s =

∑
pi. In (Ogita et al., 2005), they cascade TwoSum Algorithm and sum up the errors

to improve the result of the ordinary floating point summation fl(
∑

pi). We present hereafter their
cascading algorithm. It is based on the following error-free transformation VecSum that transforms
the vector p into a new vector with identical sum but with a condition number improved by a factor
eps.

ALGORITHM 5 (Ogita, Rump and Oishi (Ogita et al., 2005, Algo. 4.3)). Error-free vector trans-
formation for summation.

function p = VecSum(p)
for i = 2 : n

[pi, pi−1] = TwoSum(pi, pi−1)

We describe now the cascaded summation algorithm.

ALGORITHM 6 (Ogita, Rump and Oishi (Ogita et al., 2005, Algo. 4.4)). Cascaded summation.

function res = Sum2(p)
p = VecSum(p)

res = fl

((
n−1∑
i=1

pi

)
+ pn

)

The algorithm Sum2 satisfies the following error bound, which means that the computed result
res is as accurate as if the sum was computed in twice working precision.

PROPOSITION 1 (Ogita, Rump and Oishi (Ogita et al., 2005, Prop. 4.5)). Suppose Algorithm 4.4
(Sum2) is applied to floating point numbers pi ∈ F, 1 ≤ i ≤ n, set s :=

∑
pi ∈ R and S :=

∑
|pi|

and suppose neps < 1. Then,
|res− s| ≤ eps|s|+ γ2

n−1S. (5)

REC 2006 - Stef Graillat and Nicolas Louvet

6 Stef Graillat and Nicolas Louvet

The error bound (5) for the result res of Algorithm 6 is not computable since it involves the
exact value s of the sum. The following theorem (Ogita et al., 2005, Cor. 4.7) computes a valid
error bound in floating point in round to nearest, which is also less pessimistic than (5).

PROPOSITION 2 (Ogita, Rump and Oishi (Ogita et al., 2005, Cor. 4.7)). Let floating point num-
bers pi ∈ F, 1 ≤ i ≤ n, be given. Append the statements

if 2neps ≥ 1, error(“dimension too large”), end
β = (2neps/(1− 2neps)) ·

(∑n−1
i=1 |pi|

)
err = eps|res|+ (β + (2eps2|res|))

to Algorithm 4.4 (Sum2). If the error message is not triggered, err satisfies

res− err ≤
∑

pi ≤ res + err.

It may be interesting to cascade the error-free transformation. The algorithm is as follows.

ALGORITHM 7 (Ogita, Rump and Oishi (Ogita et al., 2005, Algo. 4.8)). Summation as in K-fold
precision by (K − 1)-fold error-free transformation.

function res = SumK(p, K)
for k = 1 : K − 1

p = VecSum(p)

res = fl

((
n−1∑
i=1

pi

)
+ pn

)

The following theorem gives an estimate error for Algorithm 7 which means that the computed
result res is as accurate as if the sum was computed in K-fold working precision.

PROPOSITION 3 (Ogita, Rump and Oishi (Ogita et al., 2005, Prop. 4.10)). Let floating point num-
bers pi ∈ F, 1 ≤ i ≤ n, be given and assume 4neps ≤ 1. Then, the result res of Algorithm 4.8
(SumK) satisfies for K ≥ 3

|res− s| ≤ (eps + 3γ2
n−1)|s|+ γK

2n−2S,

where s :=
∑

pi and S :=
∑
|pi|.

The following proposition gives a valid error bound in pure floating point in round to nearest
for the classical summation algorithm. This bound is more pessimistic than the one given by
Proposition 2 but does not need the computation of the error in each operation.

PROPOSITION 4. Let floating point numbers pi ∈ F, 1 ≤ i ≤ n, be given and assume that
2neps ≤ 1. Then, the result res = fl(

∑
pi) satisfies

|res− s| ≤ fl(γ2n

∑
|pi|).

REC 2006 - Stef Graillat and Nicolas Louvet

Applications of fast and accurate summation in computational geometry 7

Proof. It is shown in (Higham, 2002, Lem. 8.4) that

|res− s| ≤ γn−1

∑
|pi|.

If meps ≤ 1 for m ∈ N, fl(meps) = meps and fl(1−meps) = 1−meps. Therefore,

γm ≤ (1− eps)−1 fl(γm).

Moreover, a simple induction leads to∑
|pi| ≤ (1 + eps)n−1 fl(

∑
|pi|).

It follows that

|res− s| ≤ γn−1

∑
|pi|

≤ γn−1(1 + eps)n−1 fl(
∑

|pi|)

≤ γ2n−2 fl(
∑

|pi|) since (1 + eps)γn ≤ γn+1

≤ (1− eps)2γ2n fl(
∑

|pi|) since γn ≤ (1− eps)γn+1

≤ (1− eps) fl(γ2n) fl(
∑

|pi|)

≤ fl(γ2n

∑
|pi|).

This concludes the proof.

5. Applications in robust computational geometry

5.1. Accurate computation of determinant

The literature for the computation of accurate determinant is quite important (see for exam-
ple (Clarkson, 1992; Brönnimann and Yvinec, 1997; Daumas and Finot, 1999) and the references
therein). They often use multiprecision arithmetic to compute accurately the determinant. Here,
we present how to compute the determinant of a floating-point matrix up to a given relative error
ε using only one working precision (here the IEEE 754 double precision). Let us study the case of
a 2× 2 determinant

det2 =
(

a b
c d

)
= a · d− b · c.

Using TwoProduct, we can write [x, y] = TwoProduct(a, d) and [z, t] = TwoProduct(b, c). Then
we have det2 = x + y + z + t. We transformed the computation of the 2× 2 determinant into the
computation of a sum of four floating point numbers. We can then apply the accurate summation
Algorithm 6 to compute this sum.

REC 2006 - Stef Graillat and Nicolas Louvet

8 Stef Graillat and Nicolas Louvet

We can do the same thing for example with a 3× 3 determinant

det3 =

 a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

 =
∑

σ∈S3

signature(σ)a1,σ(1) · a2,σ(2) · a3,σ(3),

using the following algorithm ThreeProduct to transform a1,σ(1) · a2,σ(2) · a3,σ(3) into a sum of four
floating point numbers.

ALGORITHM 8. Error-free transformation of the product of three floating point numbers.

function [x, y, z, t] = ThreeProduct(a, b, c)
[p, e] = TwoProduct(a, b)
[x, y] = TwoProduct(p, c)
[z, t] = TwoProduct(e, c)

For the three floating point numbers a, b, c ∈ F, ThreeProduct transforms the product abc into the
unevaluated sum x + y + z + t of four floating point numbers. Indeed, we have

a · b · c = (p + e) · c = p · c + e · c = x + y + z + t.

This can be used to compute for example the area of a planar triangle or the volume of a
tetrahedron as shown in (Nievergelt, 2004).

The following algorithm computes the determinant of a matrix up to a given relative error. We
suppose we have a function DetVector that transforms the computation of the determinant into a
summation like mentioned above. We then compute the sum with VecSum and an associated error
bound. If this error bound is less than the desired relative error ε then we stop. Otherwise, we
continue the computation since VecSum improves the accuracy of the computed sum.

ALGORITHM 9. Algorithm to compute the determinant up to a relative error ε.

function resdet = det(A, ε)
p = DetVector(A)
repeat

p = VecSum(p)
res = pn

β = (2neps/(1− 2neps)) ·
(∑n−1

i=1 |pi|
)

err = eps|res|+ (β + (2eps2|res|))
until (err ≤ ε|res|)
resdet = res

5.2. Robust geometric predicates

An application requiring guaranteed accuracy is the computation of geometric predicates. Some
algorithms like Delaunay triangulation and mesh generation need self-consistent geometric tests.

REC 2006 - Stef Graillat and Nicolas Louvet

Applications of fast and accurate summation in computational geometry 9

Shewchuk (Shewchuk, 1997) gives a survey of the issues involved and presents an adaptive (and ar-
bitrary) precision floating point arithmetic to solve this problem. Most of these geometric predicates
require the computation of the sign of a small determinant. Recent work on this issue are (Shewchuk,
1997; Avnaim et al., 1997; Brönnimann and Yvinec, 2000; Krishnan et al., 2001; Demmel and Hida,
2004). Consider for example the predicate Orient3D which determines whether a point D is to
the left or right of the oriented plane defined by the points A, B and C. The result of the predicate
depends on the sign of the determinant

Orient3D(a, b, c, d) = sign

ax ay az 1
bx by bz 1
cx cy cz 1
dx dy dz 1

 (6)

= sign

 ax − dx ay − dy az − dz

bx − dx by − dy bz − dz

cx − dx cy − dy cz − dz

 . (7)

The computed result is of the same sign that the exact result if the relative error is less than one.
As a consequence, it is sufficient to compute an approximate value of the determinant only with a
relative error less than one. Recently, Demmel and Hida (Demmel and Hida, 2004) provide another
method to certify the sign of a small determinant. They used an accurate summation algorithm
using large accumulators. Here, we use the same kind of techniques as in the previous section. First,
we compute the determinant by using equation (7). We compute a rigorous error bound for the
error. If the relative error is less than one we obtained the sign of the determinant.

Otherwise, the determinant is expanded into a sum of 96 floating point numbers: indeed, the
determinant can be expressed as a sum of 24 monomials of the form ±ai · bj · ck, and each of
these monomials is here transformed into a sum of 4 floating point numbers with ThreeProduct (in
our implementation, we use a slightly optimized version of this process avoiding some redundant
computation). We can then apply summation Algorithm 7 until the relative error is less than one.
This can be done using the error bound of Proposition 2. In the following algorithm, we suppose
we have a function DetVector that transforms the matrix of the determinant into a vector whose
the sum is the determinant (using ThreeProduct). We denote by n the length of this vector (here
n = 94).

In next Algorithm 10, the function det computes the determinant using equation (7). The func-
tion ErrDet computes a rigorous error bound for the computation of det using similar techniques
than ones of Proposition 4.

ALGORITHM 10. Algorithm to compute the predicate Orient3D(a,b,c,d).

function sign = Orient3D(A)
res = det(A)
err = ErrDet(A)
if (err ≤ |res|)

return sign = sign(res)
p = DetVector(A)

REC 2006 - Stef Graillat and Nicolas Louvet

10 Stef Graillat and Nicolas Louvet

repeat
p = VecSum(p)
res = pn

β = (2neps/(1− 2neps)) ·
(∑n−1

i=1 |pi|
)

err = eps|res|+ (β + (2eps2|res|))
until (err ≤ |res|)
sign = sign(res)

5.3. Condition number for determinants

It is classic in perturbation analysis to introduce a condition number that measures the sensitivity
of the solution to perturbation in the data. It gives informations about the difficulty to solve the
problem accurately.

In this subsection, we define a normwise condition number for the problem of computing the
determinant of a given matrix by

κ(A) := lim
ε→0

sup
{ |det(A + H)− det(A)|

ε|det(A)|
: ‖H‖F ≤ ε‖A‖F

}
.

We use the Frobenius norm defined by

‖A‖F =
(n∑

i=1

n∑
j=1

|ai,j |2
)1/2

= trace(A∗A)1/2.

The choice of this norm rather than the 2-norm is motivated by the fact that we can give a
computable formula for the condition number.

THEOREM 2. Let A ∈ Rn×n a real matrix. Then

κ(A) =
‖A‖F ‖ adj(A)‖F

|det(A)|
,

where adj(A) := ((−1)i+j det(Aij)) is the adjugate matrix with Aij denoting the submatrix of A
obtained by deleting row i and column j.

Proof. The function det : Rn×n → R, A 7→ det(A) is Fréchet differentiable since it is a polynomial
of the coefficients of the matrix. Let us denote (Eij) the canonical basis of Rn×n. Let A = (aij)1≤i,j≤n

a matrix. We want to compute ∂ det
∂aij

(A). Let C ∈ Rn×n be the adjugate matrix of A. The n-linearity
of the determinant implies that, for all (i, j) and all t ∈ R,

det(A + tEij) = det(A) + tCij

and so
∂ det
∂aij

(A) = lim
t→0

det(A + tEij)− det(A)
t

= Cij .

REC 2006 - Stef Graillat and Nicolas Louvet

Applications of fast and accurate summation in computational geometry 11

Hence, if H = (hij) ∈ Rn×n, we have

D det(A)(H) =
∑
i,j

hij
∂ det
∂aij

(A) =
∑
i,j

hijCij = trace(CT H).

Here D denotes the differential operator. It follows from the definition of the condition number
that

κ(A) =
‖A‖F ‖D det(A)‖

|det(A)|
.

By definition
‖D det(A)‖ = sup

‖M‖F =1
|D det(A)(M)| = sup

‖M‖F =1
| trace(CT M)|.

Since 〈A,B〉 = trace(AT B) is a scalar product on Rn×n, it follows easily from the Cauchy-Schwarz
inequality that

‖D det(A)‖ = ‖C‖F .

As a consequence, κ(A) = ‖A‖F ‖ adj(A)‖F /|det(A)|. If A is invertible, we have CT = det(A)A−1

and so κ(A) = ‖A‖F ‖A−1‖F .

We can also define a componentwise condition number for the determinant by

cond(A) := lim
ε→0

sup
{ |det(A + H)− det(A)|

ε|det(A)|
: |H| ≤ ε|A|

}
,

where absolute value and comparison have to be understood componentwise. A standard compu-
tation yields

cond(A) =
n per(|A|)

det(A)
,

where per(A) is the permanent of the matrix A defined by

per(A) =
∑

σ∈Sn

∏
ai,σ(i).

This condition number makes it possible to appreciate the difficulty of computing a determinant. We
will use it in the next section to show the efficiency of our algorithm for ill-conditioned determinants.

One can find another condition number for determinant in (Higham, 1996, Pb 13.15).

6. Experimental results

We compare the following three algorithms.

1. Approximate. Straightforward double precision implementation which is not robust.

REC 2006 - Stef Graillat and Nicolas Louvet

12 Stef Graillat and Nicolas Louvet

Table I. Comparison of the 3 algorithms. The ratio
is the running time ratio compared to the Adaptive
algorithm. All times are measured in µs.

Algorithm Points

Random Nearly coplanar

Time Ratio Time Ratio

Approximate 0.023 0.34 0.023 0.0042

Adaptive 0.066 1 5.4 1

Orient3Dexact 0.066 1 2.4 0.44

2. Adaptive. The adaptive multiprecision arithmetic of Shewchuk (Shewchuk, 1997). It works by
successively getting a better estimate and stopping when accuracy is guaranteed. It is considered
as the current state-of-the-art algorithm.

3. Orient3Dexact. Our algorithm which is adaptive as well.

Table I shows the performance of the three algorithms. The ratio is the running time ratio
compared to the Adaptive algorithm. All the timing were done in C on a Intel Pentium IV 3 Ghz
using GNU C compiler (gcc-3.4.1). Every timing is a mean of 1000 tests. For random points, the
probability to be nearly coplanar is very small. Thus, the three algorithms share the same timing.
Indeed, the three algorithms use the same method, that is computing with (7), to compute the
determinant. Our algorithm Orient3Dexact and Shewchuk’s algorithm Adaptive compute also
a valid error bound which explain that there is a different timing for these two algorithms.

For nearly coplanar set of points, our algorithm is over twice as fast as Shewchuk’s algorithm
Adaptive. This may be explained by the fact that Shewchuk needs renormalisation of the expansion
which is not the case for our algorithm. For our choice of nearly coplanar points, the componentwise
condition number varies from about 1010 to 1050. The nearly coplanar points represent a very small
part of the input in practical applications. Nevertheless, they generate the most time-consuming
cases. This is why it is important to be able to deal with such ill-conditioned cases in an efficient
way.

7. Conclusion

We provide a fast and robust algorithm to compute the Orient3D predicate. Our algorithm is
as fast as Shewchuk’s algorithm for random sample of points and is twice as fast as Shewchuk’s
algorithm for nearly coplanar set of points which are the difficult cases to compute. We have tested
only the Orient3D geometric predicate. Of course, the same techniques can be easily applied
to the other predicates like InCircle and InSphere for example (see (Shewchuk, 1997)). The
potential of our algorithms is in providing a fast and simple way to extend slightly the precision of
critical variable in numerical algorithms. The techniques used here are simple enough to be coded
directly in numerical algorithms, avoiding function call overhead and conversion costs.

REC 2006 - Stef Graillat and Nicolas Louvet

Applications of fast and accurate summation in computational geometry 13

References

Avnaim, F., J.-D. Boissonnat, O. Devillers, F. P. Preparata, and M. Yvinec: 1997, ‘Evaluating signs of determinants
using single-precision arithmetic’. Algorithmica 17(2), 111–132.

Bailey, D. H.: 1995, ‘A Fortran 90-based multiprecision system’. ACM Trans. Math. Softw. 21(4), 379–387.
Bailey, D. H.: 2001, ‘A Fortran-90 double-double library’. Available at URL = http://crd.lbl.gov/~dhbailey/

mpdist/index.html.
Brent, R. P.: 1978, ‘A Fortran Multiple-Precision Arithmetic Package’. ACM Trans. Math. Softw. 4(1), 57–70.
Brönnimann, H. and M. Yvinec: 1997, ‘Efficient exact evaluation of signs of determinants’. In: SCG ’97: Proceedings

of the thirteenth annual symposium on Computational geometry. New York, NY, USA, pp. 166–173, ACM Press.
Brönnimann, H. and M. Yvinec: 2000, ‘Efficient exact evaluation of signs of determinants’. Algorithmica 27(1), 21–56.
Clarkson, K. L.: 1992, ‘Safe and effective determinant evaluation.’. In: 33rd annual symposium on Foundations

of computer science (FOCS). Proceedings, Pittsburgh, PA, USA, October 24–27, 1992. Washington, DC: IEEE
Computer Society Press, 387-395 .

Daumas, M. and C. Finot: 1999, ‘Division of floating point expansions with an application to the computation of a
determinant.’. J. UCS 5(6), 323–338.

Dekker, T. J.: 1971, ‘A floating-point technique for extending the available precision’. Numer. Math. 18, 224–242.
Demmel, J. and Y. Hida: 2004, ‘Fast and accurate floating point summation with application to computational

geometry’. Numer. Algorithms 37(1-4), 101–112.
Hida, Y., X. S. Li, and D. H. Bailey: 2001, ‘Algorithms for Quad-Double Precision Floating Point Arithmetic’. In:

Proc. 15th IEEE Symposium on Computer Arithmetic. pp. 155–162, IEEE Computer Society Press, Los Alamitos,
CA, USA.

Higham, N. J.: 1996, Accuracy and stability of numerical algorithms. Philadelphia, PA: Society for Industrial and
Applied Mathematics (SIAM).

Higham, N. J.: 2002, Accuracy and stability of numerical algorithms. Philadelphia, PA: Society for Industrial and
Applied Mathematics (SIAM), second edition.

IEEE Computer Society: 1985, IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-
1985. New York: Institute of Electrical and Electronics Engineers. Reprinted in SIGPLAN Notices, 22(2):9–25,
1987.

Knuth, D. E.: 1998, The Art of Computer Programming, Volume 2, Seminumerical Algorithms. Reading, MA, USA:
Addison-Wesley, third edition.

Krishnan, S., M. Foskey, T. Culver, J. Keyser, and D. Manocha: 2001, ‘PRECISE: efficient multiprecision evaluation
of algebraic roots and predicates for reliable geometric computation’. In: SCG ’01: Proceedings of the seventeenth
annual symposium on Computational geometry. New York, NY, USA, pp. 274–283, ACM Press.

MPFR: 2005, ‘MPFR, the Multiprecision Precision Floating Point Reliable library’. Available at URL = http:

//www.mpfr.org.
Nievergelt, Y.: 2004, ‘Analysis and applications of Priest’s distillation’. ACM Trans. Math. Softw. 30(4), 402–433.
Ogita, T., S. M. Rump, and S. Oishi: 2005, ‘Accurate Sum And Dot Product’. SIAM J. Sci. Comput. 26(6), 1955–1988.
Priest, D. M.: 1992, ‘On Properties of Floating Point Arithmetics: Numerical Stability and the Cost of Accurate

Computations’. Ph.D. thesis, Mathematics Department, University of California, Berkeley, CA, USA. ftp:

//ftp.icsi.berkeley.edu/pub/theory/priest-thesis.ps.Z.
Shewchuk, J. R.: 1997, ‘Adaptive precision floating-point arithmetic and fast robust geometric predicates’. Discrete

Comput. Geom. 18(3), 305–363.

REC 2006 - Stef Graillat and Nicolas Louvet

REC 2006 - Stef Graillat and Nicolas Louvet

