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Abstract. In this paper mathematical methods for prediction of uncertain structural responses with the aid
of fuzzy time series are presented. Uncertain measurments of structural loads and responses respectively at
equally spaced discrete time points are modeled as fuzzy variables. Hence uncertain measurments over
time are considered as time series with fuzzy data. The fuzzy variables are processed on the basis of
generally applicable numerical methods for descriptive analysis as well as for stochastic analysis. Algo-
rithms of stochastic analysis are used to forecast fuzzy time series. At this the new fuzzy-ARMA-process is
introduced. Forecasts of fuzzy time series provides informationen about future structural responses.

The algorithm of analysis and forecast of fuzzy time series are presented in detail and demonstrated by
way of numerical examples.
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1. Introduction

The prediction of future structural responses is a challenging problem in civil engineering. The knowledge
of unknown future impact and future system behavior enables the prediction of such important effects like
damage behavior, development of safety level, development of durability or the expected life time of a
system. The well established numerical structural analysis and safety assessment however presuppose the
knowledge of adequate theoretical models.

As alternative fuzzy time series can be applied. They describe sequences of measurements consisting
of imprecise data (Hareter, 2003). The uncertainty of the imprecise data is modeled as fuzziness (Möller and
Beer, 2004). Time series with fuzzy data are regarded as realizations of a fuzzy random process, that can be
viewed as a random process extended by the dimension fuzziness (Möller et al., 2005). In extension to a
random process a fuzzy random process is defined as a sequence of fuzzy random variables. Therein, a fuzzy
random variable is declared as set of uncertain realizations (fuzzy variables) in the space of the random
elementary events. Each realization of a fuzzy random process then appears as a fuzzy function, which
characterizes a sequence of fuzzy variables. In other words time series with fuzzy data can be interpreted as
random realizations of an underlying fuzzy random process.

Methods for identification and quantification of the underlying fuzzy random process are presented. A
new description of fuzzy variables by so called lαrα-discretization has been developed. This description
enables prediction without the usually performed defuzzification and refuzzification of fuzzy data. The
following types of fuzzy random processes are investigated: fuzzy-AR-processes, fuzzy-MA-processes,
fuzzy-ARMA-processes, and fuzzy-white-noise-processes. Strategies for parameter estimation have been
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Prediction of uncertain structural responses with fuzzy time series 15

developed that are applicable for stationary and non-stationary fuzzy time series. After parameter estimation
the underlying fuzzy random process is known and can be used for forecasting.

The developed theory is demonstrated by way of examples among others the heavy goods vehicle traffic
over a bridge is forecasted. Furthermore, on the basis of measured settlements over a period of four years
the future settlements for the next three years are predicted with a h-step-forecast.

2. Definition and description of fuzzy time series

Fuzzy time series are interpreted as random realizations of an underlying fuzzy random process. A fuzzy
random process (X̃τ )τ∈T is defined as a family of fuzzy random variables X̃τ with τ ∈ T. Thereby T
denotes the space of equidistant points in time. In other words a fuzzy random process (X̃τ )τ∈T is defined
as the fuzzy result of the mapping

X̃τ : Ω → F(R) (1)

in which Ω denotes the space of the random elementary events ω and F(R) characterizes the set of all
fuzzy numbers on R. Fuzzy realizations X̃τ (ω) = x̃τ with τ ∈ T are assigned to each random elementary
event ω ∈ Ω. Consequently the realizations of a fuzzy random process (X̃τ )τ∈T form the fuzzy time series
(x̃τ )τ∈T. A realization (x̃τ )τ∈T of a fuzzy random process is plotted in Fig. 1.
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Figure 1. Fuzzy time series as realization of a fuzzy random process

At each specified point τ ∈ T a fuzzy time series specifies a fuzzy variable x̃τ in accordance with
Eq. 1. A fuzzy variable x̃ is characterized by its membership function µx̃(x). A normalized membership
function µx̃(x) is defined by the following equations.

0 ≤ µx̃(x) ≤ 1 ∀ x ∈ R (2)

∃ xl, xr mit µx̃(x) = 1 ∀ x ∈ [xl;xr] (3)
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A fuzzy variable x̃ is referred to as convex if its membership function µx̃(x) monotonically decreases
on each side of the maximum value, i.e., if

µx̃(x2) ≥ min [µ(x1); µ(x3)] ∀x1, x2, x3 ∈ R mit x1 ≤ x2 ≤ x3 (4)

applies.
A convex fuzzy variable x̃ is referred to as fuzzy number x̃Z if its membership function µx̃(x) is at least

segmentally continuous and has the functional value µx̃(x) = 1 at precisely one of the x values according
to Eq. (5).

xl = xr with xl = min [x ∈ R|µx̃τ (x) = 1] (5)
and xr = max [x ∈ R|µx̃τ (x) = 1]

In the case xl < xr the fuzzy variable x̃ is a fuzzy interval x̃I . The point xl is referred to as the peak point
of the fuzzy variable.

A convex fuzzy variable x̃ is characterized by a family of α-level sets Xα according to Eq. (6). Each
α-level set Xα is a connected interval [xαl, xαr].

x̃ = (Xα = [xαl, xαr] |α ∈ [0, 1]) (6)

The number of α-level sets is denoted by n. For i = 1, 2, ..., n− 1 the following holds.

0 ≤ αi ≤ αi+1 ≤ 1 (7)
α1 = 0 und αn = 1 (8)
Xαi+1 ⊆ Xαi (9)

An example of a convex fuzzy variable x̃ characterized by n = 4 α-level sets Xα is shown in Fig. 2.
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Figure 2. α-discretization of a convex fuzzy variable

In the following the new lαrα-discretization is presented. The interval boundaries [xαil, xαir] of an
α-level set Xαi are expressed by Eqs. (10) and (11).

xαil = xαi+1l −∆xαil with ∆xαil = xαilr − xαill (10)
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xαir = xαi+1r + ∆xαir with ∆xαir = xαirr − xαirl (11)

The counter i = 1, 2, ..., n − 1 specifies α-level sets with α < 1. For i = 1 the following equations hold,
whereat the term ∆xαnl is assigned to the peak point xl.

xαnl = ∆xαnl with ∆xαnl = xl (12)

xαnr = xαnl + ∆xαnr with ∆xαnr = xr − xl (13)

The terms ∆xαil and ∆xαir are called lαrα-increments. The α-level sets have to fulfill Eq. (14).

Xαk
⊆ Xαi ∀αi, αk ∈ [0; 1] with αi ≤ αk (14)

With Eqs. (10) to (14) the lαrα-discretization is introduced. Fig. 3 illustrates the lαrα-discretization for
n = 4.
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Figure 3. lαrα-Diskretisierung with 4 α-level sets

The lαrα-discretization enables an alternative, discrete representation of a fuzzy variable x̃ in the
form of a column matrix introduced by Eq. (15), thereby ∆x1, ∆x2, ..., ∆x2n is a shortened form of
∆xα1l, ∆xα2l, ..., ∆xα1r.

x̃ =




∆xα1l

∆xα2l
...

∆xαnl

∆xαnr
...

∆xα2r

∆xα1r




=




∆x1

∆x2
...

∆xn

∆xn+1
...

∆x2n−1

∆x2n




(15)
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In context of time series with fuzzy data the following operators are introduced.
The multiplication of a real-valued [2n, 2n] matrix A with a fuzzy variable x̃ represented by n α-levels

is defined by the operator ¯ according to Eqs. (16) and (17). The arithmetic operation is equivalent to the
matrix product and results the lαrα-increments ∆zj (j = 1, 2, ..., 2n) of the fuzzy result variable z̃.

A¯ x̃ = z̃ (16)




a1,1 a2,2 . . . a1,2n

a2,1 a2,2 . . . a2,2n
...

...
. . .

...
a2n,1 a2n,2 . . . a2n,2n







∆x1

∆x2
...

∆x2n


 =




∆z1

∆z2
...

∆z2n


 (17)

The fuzzy result variable z̃ requires compliance with Eq. (14), so that Eq. (18) must be satisfied for j =
1, 2, ..., n− 1, n + 2, ..., 2n.

∆zj = aj,1∆x1 + ... + aj,2n∆x2n ≥ 0 (18)

Furthermore a special fuzzy sum and subtraction respectively is required. The operators ⊕ and ª respec-
tively between two fuzzy variables x̃ and ỹ pursuant to Eq. (19) are introduced as the addition and subtraction
respectively of the lαrα-increments according to Eq. (19)

z̃ = x̃⊕ ỹ bzw. z̃ = x̃ª ỹ (19)

The fuzzy result variable z̃ requires compliance with Eq. (14), too. The corresponding conditions are shown
in Eq. (20) in which the upper operators are applied for the fuzzy sum and the lower for the fuzzy difference.

∆zj = ∆xj ±∆yj ≥ 0 for j = 1, 2, ..., n− 1, n + 2, ..., 2n (20)

Considering the priority rule (¯ comes before ⊕) a combination of the introduced operators according to
Eq. (21) is feasible.

z̃ = A¯ x̃⊕ ...ª ...⊕ ...⊕B ¯ ỹ (21)

The fuzzy result variable z̃ also requires compliance with Eq. (14). But only the final lαrα-increments ∆zj

must be nonnegative, negative intermediate results due the application of the associative law are allowed.

∆zj ≥ 0 for j = 1, 2, ..., n− 1, n + 1, ..., 2n (22)

The demand according to Eq. (22) also represents an boundary condition for the models introduced in the
paper.

According to Eq. (1) a fuzzy variable x̃τ is interpreted as a random realization of a fuzzy random
variable X̃τ . Under the assumption of convex fuzzy realizations X̃τ (ω) = x̃ a fuzzy random variable X̃τ is
characterized by a family of random α-level sets Xα according to Eq. (23). At this the intervall boundaries
Xαl and Xαr are real-valued random variables.

X̃τ = (Xα = [Xαl,Xαr] |α ∈ [0, 1]) (23)
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The lαrα-discretization enables a new definition of a fuzzy random variable X̃τ according to Eq. (24) for
i = 1, 2, ..., n− 1.

X̃τ =
(
Xαi = [Xαi+1l −∆Xαil; Xαi+1r + ∆Xαir] |αi ∈ [0, 1); (24)
Xαn = [Xαnl; Xαnl + ∆Xαnr] |αn = 1 )

In this definition the terms ∆Xαil and ∆Xαir are correlated random variables and called random lαrα-
increments. The lαrα-discretization enables an alternative, discrete representation of a fuzzy random vari-
able X̃τ in the form of a column matrix introduced by Eq. (25), whereby the real-valued random variables
∆X1, ∆X2, ..., ∆X2n are shortened forms of the random lαrα-increments ∆Xα1l, ∆Xα2l, ..., ∆Xα1r.

X̃τ =




∆Xα1l

∆Xα2l
...

∆Xαnl

∆Xαnr
...

∆Xα2r

∆Xα1r




=




∆X1

∆X2
...

∆Xn

∆Xn+1
...

∆X2n−1

∆X2n




(25)

According to Eq. (1) a fuzzy random process (X̃τ )τ∈T is defined as a family of fuzzy random variables
X̃τ . For characterization of a fuzzy random process the first and second order moments of the process –
like for random processes – are used. The first order moment is a fuzzy variable, that can be represented
by lαrα-discretization. The lαrα-increments of the fuzzy expected value E[X̃τ ] = m̃X̃τ

of a fuzzy random
process (X̃τ )τ∈T are obtained according to Eq. (26).

E[X̃τ ] = m̃X̃τ
=




∆mα1l(τ)
...

∆mαnl(τ)
...

∆mα1r(τ)




(26)

=




∞∫
0

∆xα1l f∆Xα1l
(∆xα1l, τ)d∆xα1l

...
∞∫
−∞

∆xαnl f∆Xαnl
(∆xαnl, τ)d∆xαnl

...
∞∫
0

∆xα1r f∆Xα1r(∆xα1r, τ)d∆xα1r




The functions f∆Xαil
(∆xαil, τ) and f∆Xαir(∆xαir, τ) (i = 1, 2, ..., n) are probability density functions of

the random lαrα-increments ∆Xαil(τ) and ∆Xαir(τ) of the fuzzy random variable X̃τ at time point τ .
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Linear dependencies between two fuzzy random variables X̃τa and X̃τb
of a fuzzy random process at

time points τa and τb are quantified by the lαrα-covariance function lrKX̃τ
(τa, τb) according to Eq. (27).

lrKX̃τ
(τa, τb) =




kα1l
α1l(τa, τb) kα2l

α1l(τa, τb) · · · kα1r
α1l (τa, τb)

kα1l
α2l(τa, τb) kα2l

α2l(τa, τb) · · · kα1r
α2l (τa, τb)

...
...

. . .
...

kα1l
α1r(τa, τb) kα2l

α1r(τa, τb) · · · kα1r
α1r(τa, τb)




(27)

The elements of the lαrα-covariance function lrKX̃τ
(τa, τb) are defined by Eq. 28 where i, j = 1, 2, ..., n.

kαil
αjr(τa, τb) =

∞∫

−∞

∞∫

−∞
(∆xαil −∆mαil(τa))(∆xαjr −∆mαjr(τb))... (28)

...f
(
∆xαil,∆xαjr, τa, τb

)
d∆xαild∆xαjr

The lαrα-variance lrV ar[X̃τ ] = lrσ
2
X̃τ

corresponds to the diagonal elements of the lαrα-covariance function

lrKX̃τ
(τa, τb) with τa = τb = τ .

A fuzzy random process is stationary if the lαrα-covariance function lrKX̃τ
(τa, τb) does not depend on

τa and τb but just on the time lag ∆τ = τa − τb and if the fuzzy expected value E[X̃τ ] = m̃X̃τ
is constant

over time.
In the following a special case of fuzzy random processes is introduced. The known ARMA model

is extended to time series with fuzzy data and results the fuzzy-ARMA-model. A fuzzy random process
(X̃τ )τ∈T ist called fuzzy-ARMA[p, q]-process if it can be described by Eq. (29).

X̃τ = A1 ¯ X̃τ−1 ⊕ ...⊕Ap ¯ X̃τ−p⊕︸ ︷︷ ︸
fuzzy-AR-component

Ẽτ ª (29)

B1 ¯ Ẽτ−1 ª ...ªBq ¯ Ẽτ−q︸ ︷︷ ︸
fuzzy-MA-component

The parameters A1, ..., Ap und B1, ..., Bq are real-valued [2n, 2n] matrices. The factors Ẽτ are elements of
a fuzzy-white-noise-process (Ẽτ )τ∈T at time point τ and therefore fuzzy random variables. A fuzzy-white-
noise-process (Ẽτ )τ∈T is characterized by Eqs. (30) to (32).

E[Ẽτ ] = m̃Ẽτ
= constant ∀ τ ∈ T (30)

lrV ar[Ẽτ ] = lrσ
2
Ẽτ

= constant ∀ τ ∈ T (31)

lrKẼτ
(∆τ) =

{
lrKẼτ

(0) for ∆τ = 0
0 for ∆τ 6= 0

(32)
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3. Parameter estimation

Within the scope of modeling fuzzy time series the parameters A1, ..., Ap and B1, ..., Bq of a fuzzy-
ARMA[p, q]-process have to be determined so that the empirical time series is a representative realization.
Fundamental condition is the demand of non-negativity of the lαrα-increments ∆xj (j = 1, 2, ...n− 1, n +
2, ...2n) of all realizations x̃τ of the fuzzy-ARMA-process.

The first method is based on the postulation that the differences between the empirical and model
characteristics (first and second order moments) are minimal. This condition results in the optimization
problem given by Eq. (33), in which P is a shortened form of the process parameters A1, ..., Ap and
B1, ..., Bq

2n∑

j=1

(∆xj −∆mj(P ))2 + (33)

∞∑

∆τ=−∞

2n∑

k,l=1

(
k̂k,l(∆τ)− kk,l(∆τ, P )

)2 != min

The lαrα-increments ∆xi of the empirical fuzzy mean value x̃ are compared with the lαrα-increments ∆mi

of the fuzzy expected value m̃X̃τ
as well as the elements k̂k,l(∆τ) of the empirical lαrα-covariance function

lrK̂x̃τ (∆τ) with the elements kk,l(∆τ) of the theoretical lαrα-covariance function lrKX̃τ
(∆τ). The solution

of the minimization problem is found with the aid of the modified evolution strategy by (Möller and Beer,
2004). Constraint of the optimization problem is Eq. (22) for all realizations of the process.

The parameter estimation according to Eq. (33) postulates stationary and ergodic fuzzy time series,
otherwise it would be obviously futile to estimate the empirical parameters for each point in time. On this
account a second approach for parameter estimation of nonstationary fuzzy time series is presented. The aim
is to minimize the mean distance dF between optimal one-step forecasts ˚̃xτ (P ) and the known fuzzy values
x̃τ of the fuzzy time series for p < τ ≤ N according to Eq. (34). Advantage of this method is the fact,
that neither stationary nor ergodic fuzzy time series are presupposed. The approach allows the modeling
of nonstationary fuzzy time series with the aid of nonstationary fuzzy random processes without empiric
parameters.

dF (P ) =
1

N − p

N∑

τ=p+1

dF

(
x̃τ ;˚̃xτ (P )

)
!= min (34)

Depending on the demanded process parameters P (i. e. A1, ..., Ap and B1, ..., Bq) the optimal one-step-
forecasts ˚̃xτ (P ) are computed for each point in time. The distances dF between ˚̃xτ (P ) and the fuzzy values
x̃τ of the fuzzy time series are averaged over time. The minimization of the mean distance dF provides
unbiased estimators of the process parameters. The calculation of the optimal one-step forecasts ˚̃xτ (P ) is
given in Section 4. The definition of the distance dF between two fuzzy variables is given as follows.

According to the metrics introduced in (Körner, 1997) the distance dF (x̃; ỹ) between fuzzy variables
x̃ and ỹ is defined as the integral over the Hausdorff distance dH(·; ·) between the α-level sets Xα and Yα
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of x̃ and ỹ given by Eq. (35).

dF (x̃; ỹ) =
1∫

0

dH (Xα;Yα) dα (35)

The Hausdorff distance dH (Xα; Yα) between two non-empty compact sets Xα; Yα ⊆ R is defined by Eq.
(36).

dH (Xα; Yα) = max

{
sup

x∈Xα

inf
y∈Yα

dE (x; y) ; sup
y∈Yα

inf
x∈Xα

dE (x; y)

}
(36)

At this dE(x; y) is the Euclidean distance between two real-valued variables x, y ∈ R according to Eq. (37).

dE (x; y) = |x− y| =
√

(x− y)2 (37)

In the following a third approach for estimation of the parameters A1, ..., Ap and B1, ..., Bq of fuzzy-
ARMA-processes is presented. This approach also does not presuppose stationary or ergodic fuzzy time
series. The concept is to compare the optimal one-step forecasts ˚̃xτ (P ) with the known fuzzy values x̃τ of
the fuzzy time series for p < τ ≤ N according to Eq. (38). The error E is defined as the square deviation of
the forecasted lαrα-increments ∆x̊j(τ, P ) (j = 1, 2, ..., 2n) to the known lαrα-increments ∆xi(τ) of the
fuzzy time series. Advantage of this method is that the solution of the minimization problem can be found
with the method of gradients.

E =
1
2

N∑

τ=1+p

2n∑

i=1

(∆xi(τ)−∆x̊i(τ, P ))2 != min (38)

After initialization the parameter matrices A1, ..., Ap and B1, ..., Bq are improved with the aid of matrices
∆A1, ..., ∆Ap and ∆B1, ..., ∆Bq according to Eqs. (39) and (40).

Ar(new) = Ar(old) + ∆Ar with r = 1, 2, ..., p (39)

Bs(new) = Bs(old) + ∆Bs with s = 1, 2, ..., q (40)

The matrices ∆A1, ..., ∆Ap and ∆B1, ..., ∆Bq are built proportional to the partial derivativs of the error
E with respect to the belonging parameter matrices according to Eqs. (41) and (42). The factor η (η > 0)
defines the increment.

∆Ar = −η
∂E

∂Ar

= −η




∂E
∂a1,1(r) · · · ∂E

∂a1,2n(r)
...

. . .
...

∂E
∂a2n,1(r) · · · ∂E

∂a2n,2n(r)


 (41)

∆Bs = −η
∂E

∂Bs

= −η




∂E
∂b1,1(s) · · · ∂E

∂b1,2n(s)
...

. . .
...

∂E
∂b2n,1(s) · · · ∂E

∂b2n,2n(s)


 (42)
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The partial derivatives ∂E
∂au,v(r) and ∂E

∂bu,v(s) of the error E with respect to the single elements of the parameter
matrices are defined by Eqs. (43) and (44) (u, v = 1, 2, ..., 2n).

∂E

∂au,v(r)
=

N∑

τ=1+p

(∆xu(τ)−∆x̊u(τ, P ))∆xv(τ − r) (43)

∂E

∂bu,v(s)
=

N∑

τ=1+p

(∆xu(τ)−∆x̊u(τ, P ))∆ε̂v(τ − s) (44)

The terms ∆ε̂v(τ − s) are the lαrα-increments of the estimated realizations ˆ̃ετ of the fuzzy-white-noise-
process (Ẽτ )τ∈T. For each point in time τ − s ≤ p the (not ascertainable) realizations ∆ε̂v(τ − s) are
replaced by the estimated expected value Ê [∆εv].

∂E

∂bu,v(s)
=

N∑

τ=1+p

(∆xu(τ)−∆x̂u(τ, P )) Ê [∆εv] (45)

Constraint of the minimization problem is the demand of non-negativity of the estimated lαrα-increments
∆ε̂j(τ) and furthermore the ˆ̃ετ have to satisfy the conditions of a fuzzy-white-noise-process.

4. Forecast strategies

Goal of forecast is the determination of future fuzzy data x̃N+h (h = 1, 2, ...) following an observed time
series with fuzzy data x̃1, x̃2, ..., x̃N . Fundamental precondition for this purpose is the assumption and
estimation of an underlying fuzzy random process (X̃τ )τ∈T. Thus the validity of a forecast is associated
with the validity of the postulated fuzzy random process.

Therefor a time series with fuzzy data x̃1, x̃2, ..., x̃N is interpreted as a realization of a fuzzy random
process (X̃τ )τ∈T. Consequently forecast is the estimation of fuzzy variables x̃N+h belonging to the same
realization. Analogical the classical time series analysis (Schlittgen and Streitberg, 2001) a forecasted fuzzy

data is regarded as a realization ~̃xN+h of a fuzzy random forecast process ~̃XN+h = ~̃XN+h(x̃1, x̃2, ..., x̃N ), at

which ~̃XN+h is a random variable depending on the realizations x̃1, x̃2, ..., x̃N of the fuzzy random variables
X̃1, X̃2, ..., X̃N .

The fuzzy random forecast process (~̃Xτ )τ∈T of an underlying fuzzy-ARMA[p, q]-process (X̃τ )τ∈T is
defined according to Eq. (46) where h = 1, 2, ... .

~̃XN+h = A1 ¯ ~̃XN+h−1 ⊕ ...⊕Ap ¯ ~̃XN+h−p ⊕ ẼN+h ª (46)

B1 ¯ ẼN+h−1 ª ...ªBq ¯ ẼN+h−q

with ~̃XN+h−u =

{
x̃N+h−u for N + h− u ≤ N
~̃XN+h−u for N + h− u > N

, u = 1, 2, ..., p

and ẼN+h−v =

{
ε̃N+h−v for N + h− v ≤ N

ẼN+h−v for N + h− v > N
, v = 1, 2, ..., q
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Thereby for each point in time τ = N + h− u ≤ N the observed fuzzy variables x̃N+h−u are inserted for
~̃XN+h−u. For each point in time τ = N + h− v ≤ N the ẼN+h−v are replaced by the realizations ε̃N+h−v

of the fuzzy-white-noise-process (Ẽτ )τ∈T.

4.1. OPTIMAL FORECAST

The optimal forecast ˚̃xN+h to the time point τ = N + h is defined as the conditional fuzzy expected value
according to Eq. (47).

˚̃xN+h(x̃1, x̃2, ..., x̃N ) = E[X̃N+h | x̃1, x̃2, ..., x̃N ] = E[~̃XN+h] (47)

In the following the optimal forecast of a fuzzy-ARMA-process, which is the underlying fuzzy random
process of an observed sequence of fuzzy data, is introduced.

The optimal one-step forecast of a fuzzy-ARMA[p, q]-process (X̃τ )τ∈T according to Eq. (29) is defined
by Eq. (48).

˚̃xN+1 = A1 ¯ x̃N ⊕ ...⊕Ap ¯ x̃N+1−p ⊕ E[Ẽτ ]ª (48)
B1 ¯ ε̃N ª ...ªBq ¯ ε̃N+1−q

The optimal h-step forecast is obtained by recursive use of the optimal one-step forecast according to Eq.
(48). Consequently the forecasted fuzzy data converge with increasing forecast step h on the fuzzy expected
value E[X̃τ ]. The optimal h-step forecast of a fuzzy-ARMA[p, q]-process (X̃τ )τ∈T is defined by Eq. (49).

˚̃xN+h = A1 ¯ x̃N+h−1 ⊕ ...⊕Ap ¯ x̃N+h−p ⊕ E[Ẽτ ]ª (49)

B1 ¯ ˆ̃εN+h−1 ª ...ªBq ¯ ˆ̃εN+h−q

with x̃N+h−u =

{
x̃N+h−u für N + h− u ≤ N
˚̃xN+h−u für N + h− u > N

, u = 1, 2, ..., p

and ε̃N+h−v =

{
ε̃N+h−v für N + h− v ≤ N

E[Ẽτ ] für N + h− v > N
, v = 1, 2, ..., q

Thereby for each point in time τ = N +h−u ≤ N the optimal forecasts ˚̃xN+h−u are inserted for x̃N+h−u.
For each point in time τ = N + h− v > N the ε̃N+h−v are replaced by the fuzzy expected value E[Ẽτ ] of
the fuzzy-white-noise-process (Ẽτ )τ∈T.

4.2. FUZZY FORECAST INTERVALS

A fuzzy interval x̃I is refered to as fuzzy forecast interval x̃κ
N+h, if realizations ~̃xN+h of the fuzzy random

forecast process (~̃Xτ )τ∈T are contained in x̃I with the probability κ. Fuzzy forecast intervals x̃κ
N+h at time

point τ = N+h of a fuzzy time series x̃1, x̃2, ..., x̃N can be estimated with the aid of monte-carlo-simulation

of the fuzzy random forecast process (~̃Xτ )τ∈T. The monte-carlo-simulation of the fuzzy random forecast

process (~̃Xτ )τ∈T (with an underlying fuzzy-ARMA[p, q]-process (X̃τ )τ∈T) is obtained by the recursive
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procedure according to Eq. (50). In the first step a realization ~̃xN+1 at time point τ = N + 1 of the fuzzy

random forecast process (~̃Xτ )τ∈T is simulated. The realization ~̃xN+1 of the fuzzy random variable ~̃XN+1

depends on the realization ε̃N+1 of the fuzzy-white-noise-variable ẼN+1. The fuzzy variables x̃τ and ε̃τ at
time points τ ≤ N are given by the time series.

~̃XN+1 = A1 ¯ x̃N ⊕ ...⊕Ap ¯ x̃N+1−p ⊕ ẼN+1 ª (50)
B1 ¯ ε̃N ª ...ªBq ¯ ε̃N+1−q

The fuzzy variable ~̃xN+1 is obtained by monte-carlo-simulation of a realization ε̃N+1. By use of the obtained
fuzzy variable ~̃xN+1 and monte-carlo-simulation of a realization ε̃N+2 the fuzzy variable ~̃xN+2 is obtained
in the next step. A successive computing at time points τ = N + 1, N + 2, ... results one potential future
gradient of the fuzzy time series (x̃τ )τ∈T. By repetition of this procedure a number of potential future
realizations is obtained.

With the aid of s simulated potential future realizations of a fuzzy time series (x̃τ )τ∈T fuzzy forecast
intervals x̃κ

N+h can be estimated as follows. The interval boundaries ~xαil(N + h) and ~xαir(N + h)] of
the α-level sets ~Xαi(N + h) of the s simulated fuzzy variables ~̃xN+h are arranged according to size and
subscripted according to Eq. (51).

~x1
αil(N + h) ≤ ~x2

αil(N + h) ≤ ... ≤ ~xs
αil(N + h)

(51)
~x1

αir(N + h) ≤ ~x2
αir(N + h) ≤ ... ≤ ~xs

αir(N + h)

The interval boundaries xκ
αil

(N + h) and xκ
αir(N + h) of the α-level sets Xκ

αi
(N + h) of a fuzzy forecast

interval x̃κ
N+h at time point τ = N + h can be estimated according to Eq. (52) for a confidence level κ. Eq.

(52) is valid for an even number of s.

xκ
αil(N + h) =

{
≤ ~x1

αil
(N + h) für a = 0

~xa
αil

(N + h) für 0 < a ≤ s
2

(52)

with a = int
[
s ·

(
1
2
− κ

2

)]

xκ
αir(N + h) =

{
~xb+1

αir (N + h) für s
2 ≤ b < s

≥ ~xs
αir(N + h) für b = s

with b =
s

2
+ int

[
s ·

(
κ

2

)]

The interval boundaries xκ
αil

(N + h) and xκ
αir(N + h) of the α-level sets Xκ

αi
(N + h) according to Eq.

(52) correspond with the lower and upper quantile of the empiric distribution of the interval boundaries.
Therewith future realizations ~̃xN+h of a fuzzy time series (x̃τ )τ∈T are contained in the fuzzy forecast
interval x̃κ

N+h with a probability κ.
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4.3. FUZZY RANDOM FORECAST

The forecast strategies presented in sections 4.1 and 4.2 provide concrete fuzzy variables and fuzzy intervals.
In the following a fuzzy random forecast is presented, which provides estimators for future fuzzy random

variables ~̃Xτ of the fuzzy random forecast process (~̃Xτ )τ∈T at time points τ = N +h. Therewith statements
about the probability of future fuzzy variables are feasible.

By monte-carlo-simulation of s potential future realizations (~̃xN+h | x̃1, x̃2, ..., x̃N ) of the fuzzy time

series (x̃τ )τ∈T the fuzzy random variable ~̃XN+h can be estimated. For characterization of ~̃XN+h the first

and second order moments of the fuzzy random variable ~̃XN+h are used. With the aid of the simulated fuzzy

variables ~̃xc
N+h (c = 1, 2, ..., s) the estimator of the fuzzy expected value E[~̃XN+h] is obtained as the fuzzy

mean value x̃N+h at time point τ = N + h according to Eq. (53).

Ê[~̃XN+h] = x̃N+h =
1
s

s⊕

c=1

~̃x
c
N+h (53)

The fuzzy expected value E[~̃XN+h] is identical with the optimal forecast ˚̃xN+h. The lαrα-subtraction

Ê[~̃XN+h] ª E[~̃XN+h] (and x̃N+h ª ˚̃xN+h respectively) is a measure for the performance of the simu-
lation. With increasing number of s the norm of the empiric lαrα-variance lrV ar of the lαrα-subtraction
x̃N+h(c)ª ˚̃xN+h (c = 1, 2, ..., s) according to Eq. (54) converges on zero. Consequently, with increasing
number s of realizations ~̃xc

N+h (c = 1, 2, ..., s) the simulation represents the characteristics of the fuzzy

random forecast process (~̃Xτ )τ∈T superiorly.

lim
s→∞

∣∣∣lrV ar
[
x̃N+h(c)ª ˚̃xN+h | c = 1, 2, ..., s

]∣∣∣ = 0 (54)

By defining a maximal value η for the norm of the empiric lαrα-variance lrV ar according to Eq. (55) a
minimum number sm of realizations can be obtained. In other words, for a wanted performance η of the
simulation a number of sm realizations is needed.

∣∣∣lrV ar
[
x̃N+h(c)ª ˚̃xN+h | c = 1, 2, ..., sm

]∣∣∣ ≤ η (55)

The elements of the lαrα-covariance function lrK~̃Xτ
(τa, τb) of the fuzzy random forecast process (~̃Xτ )τ∈T

are defined by Eq. 56 where i, j = 1, 2, ..., n.

k̂αil
αjr(τa, τb) =

1
s

s∑

c=1

[
(∆~xc

αil(τa)−∆x̊αil(τa)) (56)

(∆~xc
αjr(τb)−∆x̊αjr(τb))

]
(57)

Thereby the terms ∆~xc
αil∗(τ) are the lαrα-increments of the simulated fuzzy variables ~̃xc

τ at time point
τ > N and the terms ∆x̊αil∗(τ) are the lαrα-increments of the optimal forecast ˚̃xτ . The estimator for

the lαrα-variance lrV ar[~̃Xτ ] = lrσ
2
~̃Xτ

corresponds the diagonal elements of the estimated lαrα-covariance

function lrK̂ ~̃Xτ
(τa, τb) with τa = τb = τ .

REC 2006 - Bernd Möller and Uwe Reuter



Prediction of uncertain structural responses with fuzzy time series 27

5. Examples

5.1. EXAMPLE 1

Analysis of time series with fuzzy data is demonstrated by way of heavy goods vehicle traffic over the
brigde Blaues Wunder in Dresden. Since October 1999 a weight-in-motion measuring point records the
entire traffic over the brigde. The data are kindly provided by the highway board department of Dresden.
For the projected analysis the measured data for heavy goods vehicle are revised of weekend and holiday
data and thereafter fuzzified based on the histogramms of each weekday. The time series thus obtained is
assumed to be stationary. June 2002 to April 2003 is considered as time period analyzed. An section of the
time series is shown in Fig. 4.

1 2 3     . . .              September 2002 . . .       19  20  21
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Figure 4. Time series with fuzzy data of heavy goods vehicle traffic over the bridge Blaues Wunder in Dresden (section)

The lαrα-discretization is applied to α-levels α1 = 0.0, α2 = 0.25, α3 = 0.5, α4 = 0.75 and α5 = 1.0.
Fig. 5 shows exemplarily the plot of lαrα-increments ∆xαil and ∆xαir.
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Figure 5. Plot of the lαrα-increments

Modeling of this time series with fuzzy data bases on a fuzzy-ARMA [10,0]-process. For estimation
of the parameters A1, A2, ..., A10 the minimization problem according to Eq. (33) is solved. On this ac-
count the empirical fuzzy mean value x̃ (see Fig. 6), the empirical lαrα-covariance function, and thus the
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empirical lαrα-variance are estimated from the time series under assumption of ergodicity. Consequently,
it is demanded that the differences between the empirical and model characteristics (first and second order
moments) are minimal.

0.98 2.75                   19.75 x [t]

1

0.5
x~

m ( )x
x~

Figure 6. Fuzzy mean value

The solution of the optimization problem yields the following estimators: the process parameters
A1, A2, ..., A10 as well as the fuzzy expected value E[Ẽτ ], the lαrα-variance lrV ar[Ẽτ ] and the lαrα-
covariance function lrKẼτ

(∆τ) as parameters of the fuzzy white noise process (Ẽτ )τ∈T. With the aid of
the estimated underlying fuzzy-ARMA[10,0]-process forecast of the following fuzzy data in May 2003 is
feasible. The optimal 1-step-forecast of the fuzzy-ARMA[10,0]-process is given by Eq. (58).

˚̃xN+1 = A1 ¯ x̃N ⊕ ...⊕A10 ¯ x̃N−9 ⊕ E[Ẽτ ] (58)

A repeated application of Eq. (58) results in the h-step forecast. The forecasted fuzzy data converge on
the fuzzy expected value. The resulted fuzzy data in comparison to the real measured data are shown in
Fig. 7. The forecast refers to the data for heavy goods vehicle on 12 weekdays in May 2003. The optimal
forecasts differ somewhat from the real measurd data. Reason for it is, that the analysed fuzzy time series is
characterized by a comparatively minor random influence

N+1 2 3    . . .            May 2003 . . . 10 11 12N N N N N+ + + + +
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x [t]~
t

x
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Figure 7. Optimal forecasts in comparison with the measured fuzzy time series
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5.2. EXAMPLE 2

Analysis and forecast of nonstationary fuzzy time series is demonstrated by example of extensometer mea-
surements. The given series was measured from 1999 to 2002 and is kindly provided by the EIBS GmbH,
Dresden. Table I shows a short section of the measured time series over five days. Three different measuring
data exist at each time point. Instead of computing the mean value the measuring difference is considered
as uncertainty and modeled as fuzzy variable. The lαrα-discretization is realized for α-levels α1 = 0 and
α2 = 1. Fig. 8 shows the plot of the fuzzy time series.

Table I. Section of extensometer measurements

date 1st meas. 2nd meas. 3rd meas. mean value
[mm] [mm] [mm] [mm]

...
...

...
...

...
30.05.2000 22.51 22.50 22.52 22.510
27.06.2000 22.50 22.52 22.53 22.517
27.07.2000 22.40 22.40 22.41 22.403
30.08.2000 22.35 22.36 22.35 22,353
27.09.2000 21.72 21.80 21.77 21.763

...
...

...
...

...

1999       2000      2001       2002
t

x
t

[mm]

34.5
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~

1 2  . . . . . .  49

Figure 8. Time series with fuzzified extensometer measurements
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The modeling of this fuzzy time series obviously requires a nonstationary fuzzy stochastic process
model. The fuzzy time series is specified as nonstationary fuzzy-ARMA-process of the order p = 10 and
q = 3. The estimation of the parameters A1, A2, ..., A10 and B1, B2, B3 is done with the aid of the
optimization problem given by Eq. (34). This procedure yields optimal 1-step-forecasts with a minimized
distance to the empirical fuzzy variables in the considered space of time. The result is shown in Fig. 9.
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1 2  . . . . . .  49

Figure 9. Optimal 1-step-forecasts of the fuzzy time series

For parameter estimation of the underlying fuzzy-ARMA[10,3]-process was based on the empirical
fuzzy time series in the space of time from December 1998 until November 2002. The estimated fuzzy
stochastic process enables the forecast of future settlements. The optimal long running forecast for the
following 37 month is shown in Fig. 10. This is equivalent to a forecasting horizon of 3 years.

With the aid of the fuzzy-ARMA[10,3]-process the estimation of fuzzy forecast intervals is feasible.
The fuzzy forecast intervals specify domains in which future realizations are contained with a confidence
level κ. Exemplarily the fuzzy forecast intervals with the confidence level 0.95 are shown in Fig. 11.

6. Conclusions

In this paper a new approach for description and modeling of time series with uncertain data is presented.
Uncertain data at equally spaced discrete time points are modeled as time series with fuzzy data. In this
context a new method for representation of fuzzy data is presented. The lαrα-discretization enables a new
statistical evaluation of fuzzy samples. At this the new fuzzy-ARMA-process is introduced. This process en-
ables analysis and forecast of suitable time series with fuzzy data. The fuzzy-ARMA-process is successfully
applied to a time series of heavy goods vehicle traffic data and a time series with uncertain extensometer
measurements.
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Figure 10. Optimal long running forecast of the fuzzy time series
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Figure 11. Fuzzy forecast intervals for a confidence level 0.95
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