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Abstract. This work presents an interval arithmetic technique to solve constrained reliability opti-
mization problems arising in systems with unit redundancy. The technique finds efficiently the global
minimum of the cost function under reliability constraints, and it also solves the corresponding dual
problem. The results obtained with this technique are compared with those obtained with the clas-
sical Lagrange multiplier method and the branch-and-bound technique,which are very commonly
used for both the redundancy allocation problem and the mixed integer-type reliability-redundancy
allocation problem. Some illustrative examples are provided.
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1. Introduction

In most reliability optimization problems, the decision variables are the number of redundancies that
are integers (integer programming or redundancy allocation problems), the component reliabilities
that are real numbers (real programming or reliability allocation problems), or a combination of
both (mixed integer programming or reliability-redundancy allocation problems). These problems
have been studied in great detail for different reliability optimization techniques as the exact
techniques: the Lagrange multiplier (LM) with Kuhn-Tucker conditions (Misra and Ljubojevic,
1973) and dynamical programming (Tillman et al., 1985), or the iterative methods: the branch-
and-bound technique (Nakagawa et al. ; 1978), and the heuristic method (Tillman et al., 1978). Only
few techniques have demonstrated to be effective when applied to large scale nonlinear redundancy
allocation problems , (Ramakumar, 1993), (Harunuzzaman and Aldemir, 1996), (Bulfin and Liu,
1985). Another drawback is that the solutions are non integers and hence the true optimal solution
which must be integer is not guaranteed. An efficient method combining the Lagrange multiplier
method and the branch-and-bound technique (LMBB) is proposed by (Way et al., 1987). In the
other hand, interval techniques have proved to be effective solving nonlinear global optimization
problems (Ratschek and Rokne, 1990), (Hansen, 1992), (Kearfott, 1996), (Munoz, 2002). In this
paper, an interval arithmetic technique will be introduced to solve reliability optimization problems.
The results of this interval solution technique will be compared with those obtained from the LM
and LMBB techniques.

* This work was possible with the support of OSP-SUBR
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In this paper we are dealing with the solution of the following integer programming problems:

Minimize C(z),

Subject to R(z) > Ry,
x = (£1,%2,...,%p), (1)
T > 2,

x; is integer for ¢ = 1,...,n,

or

Maximize R(z),

Subject to C(z) < Oy,
x = (21,%9,...,Tpn), (2)
T > 2,

x; is integer for ¢ = 1,...,n

where C(z) and R(z) are differentiable functions, and 0 < Ry < 1.

The content of this paper is as follows: In the next section we formulate the optimization problems
arising in systems with unit redundancy. In Section 3, interval arithmetic notation is introduced.
Interval optimization tools and an algorithm to solve (1), (2) are presented in Section 4. Illustrative
examples are shown in Section 5, and conclusions are given in Section 6.

2. Problem Formulation

There are different types of optimization problems related to systems with unit redundancy (Agrafi-
otis and Tsuokalas, 1994; Coit, 2001; Gurov et al., 1995).

Figure 1. Original System of n units in series

An original system is shown in Figure 2, and it is assumed to consist of a number of n units, all
of which must be working for the system to succeed. The total cost Cj is obtained by Cy = Y"i"; ¢;,
where ¢; is the cost of unit 7, and the total system reliability Ry is obtained by Ry = [];- p;, where
p; is the reliability of unit 7.
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Figure 2. System with Unit Redundancy Configuration

If the individual units of the system are replicated, then we have unit redundancy, as shown in
Figure 2.

Given the basic system with n different units as shown in Figure 2, we want to improve the
overall system reliability to R, by using the unit redundancy with a minimum cost.

The two main questions to be addressed are:

a) What should be the minimum number of redundancies for the i-th unit, for i = 1,2,...,n, so
that the system reliability is maximum?

b) What should be the number of redundancies for the i-th unit, for s = 1,2,...,n, so that the
system cost is minimum?

MINIMIZING THE SYSTEM COST

The constrained optimization problem is defined by

n
minimize C = Zcixi,
i—1
n
subject to R = H[l — (1 —pi)*] (3)
i=1
Z R07

MAXIMIZING THE SYSTEM RELIABILITY

The constrained optimization problem is defined by

maximize R = H[l — (1 —=pi)™]

=1

n
subject to C = Zcixi < Cy, (4)
i=1
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where
C : total system cost

Cp : the maximum required system cost

R : system reliability

Ry : the minimum required system reliability

¢; : cost of unit 3.

z; : the number of units in parallel replacing the
original unit s.

p; + reliability of unit s.

3. Interval Arithmetic Concepts

Real interval arithmetic was introduced in (Moore, 1962). Based on (Kearfott, 1996), interval
arithmetic operations are defined by the following rules

[a,b] + [¢,d] = [a+ ¢,b+d]

[aab] - [Cad] = [a—d,b—c]

[a,b] - [¢,d] = [min{ac, ad, be, bd}, max{ac, ad, be, bd}]
[0’7 b]/[ca d] = [0’7 b] : [1/d7 1/6] it 0 ¢ [Ca d]
Let g be any predefined function in some programming language (like sin, cos, exp, etc.). Then

the corresponding predefined interval function IG is defined by the range of g over y.

IG(y) = g(y) ={9(y) : y € y}.

Interval arithmetic tools needed to solve (6),(14) are established in Ratschek’s work see (Ratschek
and Rokne, 1990). The main interval arithmetic tool applied to optimization problems is the concept
of an inclusion function. A function F' is called an inclusion function for f if

f(y) € F(y) for any y.

Let f(x) be any expression in the variable 2z € R™. Then the expression which arises if each
occurrence of z in f(z) is replaced by @, if each predeclared function ¢g in f(z) is replaced by
IG, and if the arithmetic operations in f(z) are replaced by the corresponding interval arithmetic
operations, is called the natural interval extension of f(x) to @ and it is denoted by f(y). The
following example illustrates interval arithmetic.

EXAMPLE 1. Let f : R? — R,be the Rosenbrock function f(z,y) := 100 * (y — 2%)? + (1 — x)2.

Consider the interval vector X := (z,y) = ([0.7,1],]0.0,0.3]). Then for z € ¢ and y € y,
flz,y) = 100 (y — ) +(1—z)?
€ 100 % (y — )% + (1 — m)
= 100 * ([0.0,0.3] —[0.7,1]?)2 + (1 — [0.7,1])?
— 100 # (0.0, 0.3] — [0.49, 1])2 + [0.0, 0.3]2
= 100 * ([~1.0, —0.19]? + [0.0,0.091]
— [3.61,100.09].
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4. Solution Methods

4.1. THE LAGRANGE MULTIPLIERS METHOD, THE KUHN-TUCKER CONDITIONS AND
NEWTON’S METHOD

This technique provides the exact solution of constrained optimization problems. Given the function
¢: X CR* = R and constraints C(z) = (c1(z),...,cm(z))T : R* = R™, for . = (x1,---,2,) € X
solve

Minimize ¢(z)
subject to ¢i(x) < b, i=1,---,m. (5)
The functions ¢(z) and c;j(z) can be nonlinear functions. The Lagrange multipliers technique

transforms the constrained optimization problem (5) in an unconstrained optimization problem by
introducing the Lagrange multipliers. The new objective function, called the Lagrangian, becomes

Minimize L(z,\) = ¢(z) — > _ Ni(ci(z) — by)
i=1
Ai > 0 for all 4. (6)
4.1.1. Kuhn-Tucker Conditions

According to the Kuhn-Tucker conditions (Kuhn and Tucker, 1951), the necessary conditions for
the maximum to exist are:

OL(z,))
— = =1,...
8513] 07 J ) y T (7)
OL(z,\) B
AZTAZ- =0 11= ]_, ., (8)
Ai >0, ¢i(z)—b; <0, i=1,...,m (9)

The equations (7) and (8) form a system of n + m simultaneous equations. The solutions to these
equations are extreme points of (5).

4.1.2. Multivariable Newton’s method
For z € R", the nonlinear simultaneous equations

F(z) = (fi@),..., fa(2))" = (0,...,0)7,
can be solved by the multivariable Newton’s method (Burden, Faires and Reynolds, 1981), as follows
) = 2B _ B (N =1 R (2R, (10)

where z(®) is the solution vector at iteration k, and v is a positive scalar. v controls the rate
of convergence. If v is greater than one, the convergence is faster; if v is between zero and one,
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the convergence is slower. Newton’s method requires the evaluation of partial derivatives of the
simultaneous equations. In some applications where the functions are nonsmooth, it is convenient
to use alternative approaches to the derivatives.

4.2. BRANCH-AND-BOUND TECHNIQUE IN INTEGER PROGRAMMING

The branch-and-bound technique of integer programming in Reliability optimization is developed
in (Nakagawa et al. , 1978) as follows:

1. Solve the problem as if all variables were real numbers. This solution is the upper bound for the
maximization problem (or the lower bound for the minimization problem).

2.Choose one variable at a time that has a noninteger value, says z;, and branch that variable to
the next higher integer value for one problem and to the next lower integer value for the other. This
results in two constraints z; > [z;] + 1 and z; < [z;] that are added in the two branched problems.
Solve both problems by the Lagrange multiplier method.

3. Now variable j is an integer in either branch. Fix the integers of z; for the following steps of
branch and bound. Select the branch that results in higher system reliability. Then repeat step2 on
another variable x), # x; for each of the new problems until all variables become integers.

4. Stop branching the problem if the solution is worse than the current best integer solution. Stop
the iteration when all the desired integer variables are obtained.

4.3. LAGRANGE MULTIPLIERS METHOD, FRITZ JOHN CONDITIONS AND MULTIVARIATE
INTERVAL NEWTON METHOD

In the Fritz John conditions (Hansen, 1992) the Lagrangian function is

m
Lz, i, A) = = pd(z) — Y Ni(ci(z) — by)
i=1
Ai > 0 for all 4. (11)
The nonlinear simultaneous equations F(x) = (fi(z),..., fo(z))T = (0,...,0)T can also be

solved by using multivariate interval Newton methods, which are developed for both smooth and
non smooth cases. Consider F : ® ¢ R* — R", and suppose that N(F; m(k),?c(k)) and z*T1 are
defined by

N(F;a®) 70y = zk+v) - gk+1) — o) \ N (F; k), (), (12)
where v represents the set of lower and upper bounds on the solution set of
F'(a®)(z — 3®) = —F(@®), (13)

z(*) is the midpoint of the vector (%), and F'(2(*)) is an inclusion interval extension of first order
of the Jacobi matrix F'(z).

Convergence and existence or uniqueness verification with interval Newton methods have been
studied in the past (Kearfott, 1996), (Neumaier, 1990), (Moore, 1979). In (Kearfott, 1996) the
quadratic convergence of the multivariate interval Newton’s method is shown.
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The solution algorithm presented in this paper is applied to a sequence of intervals, beginning
with some initial interval vector #®) given by the user. The initial interval can be chosen to be
sufficiently large to enclose all physically feasible points. It is assumed that the global optimum
will (o)ccur at an interior stationary minimum of the objective function and not at the boundaries
of 20,

Interval arithmetic has been used in many optimization applications (Moore, 1979), (Ratschek
and Rokne, 1990), (Neumaier, 1990), (Ratschek, 1988), (Munoz and Pierre, 2004)

5. GlobSol

GlobSol is a package, based on interval arithmetic routines portable in Fortran 90. The definition of
optimization problems is easy in GlobSol, and the algorithm configuration is flexible, see (Kearfott,
1996). GlobSol solves constrained optimization, unconstrained optimization, and nonlinear algebraic
systems. It provides rigorous global search, and compiles numerous performance statistics. For
constraint optimization problems, GlobSol generates a decreasing sequence of interval vectors that
includes the global minimum or global maximum of the objective functions in a given feasible region
20, Nonsmooth optimization problems can be treated as smooth problems in GlobSol, see (Murioz
and Kearfott, 2004). The following solution algorithm is used in the examples of this work, and
it is based on a combination of several interval global optimization techniques, for more detailed
information see Chapter 5 of (Kearfott, 1996).

SOLUTION ALGORITHM
Let (%) be an initial interval vector. For an interval vector z(¥)
20 52 5... 5 2k follow the steps:

in the sequence of interval vectors

1. Compute interval evaluations for the gradient of the objective function, VC(2*)), and the
constraint function, R(z*)).

2. Gradient range test If the zero vector is not in the gradient of C, 0 ¢ VC(2®), then z(*)
is discarded, thus no solution of VC(&(*)) = 0 exists in this interval vector. Otherwise, the
testing of z*) continues.

3. Objective range test Compute an interval evaluation of the objective function, C'(#(¥)). If the
lower bound of C'(*)) is greater than a known upper bound on the global minimum of C(z),
then z®) cannot contain the global minimum, and it is discarded. Otherwise, testing of z(k)
continues.

4. Interval Newton test Solve the linear interval equation system for a new interval Ny

C" (@M (Ny — 2F)) = —v (b)),
where C” (%)) is an interval evaluation of the Hessian matrix of C(z), over the current interval

L

#%) where 2(*) is the midpoint of 2%). It can be shown that if z* is a root of VC(¥) = 0,
then it is also contained in Ny.
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a. If NN a®) =0, then VC(2*)) = 0 does not have a root in 2*) and #*) is discarded.

—

b. Evaluate C(2(*)) and find an upper bound for use in Step 3.

c. If N na®) = Ny, then there is exactly one root of VC(2*)) = 0 in «*), which may
correspond to the global minimum.

d. If neither of the above is true, then no further conclusion can be drawn.

6. Numerical Results

The following examples compare GlobSol results with those of the Lagrange multiplier method
for the unit redundancy optimization problem (6). G; represents GlobSol results, LM represents
results from the Lagrange multiplier method, and LM BB results from the Lagrange multiplier
method with branch-and-bound technique.

EXAMPLE 2. A basis series consists of 4 units with costs ¢y = 1, ca = 2, ¢c3 = 4, and ¢4 = 8
units of money and reliability values py = 0,2, ps = 0.4, p3 = 0.6, py = 0.8. Design a new system
configuration incorporating the unit redundancy concept to achieve an overall system reliability of
R = 0.995 at minimum cost. Solve the dual problem maximizing the system reliability with the cost
constraint.

Considering x = (x1, 2, 23,%4), an integer programming problem corresponding to this example
is defined as follows:

Minimize ¢(x) = x1 + 2x9 + dx3 + 824

subject to the constraints
(1 -0.8"1)(1—0.6"2)(1 —0.4*%)(1 — 0.2*) > 0.995

x; positive integer for i =1,2,3,4.
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The following F90 file is used to solve this optimization problem with GlobSol.

PROGRAM RELIABILITY

USE CODELIST-CREATION
PARAMETER (NN=4)

TYPE(CDLVAR), DIMENSION(NN):: X
TYPE(CDLLHS), DIMENSION(1):: PHI
TYPE(CDLINEQ), DIMENSION(1):: G
TYPE(CDLEQ), DIMENSION(}):: C
TYPE(INTERVAL) :: IPI
INTEGER I
IPI = IVL(3.14159265358979323846264338327D0)
CALL INITIALIZE-CODELIST(X)
PHI(1) = X(1) + 2*X(2) + 4*X(3) + 8*X(4)
G(1) = -(1-0.8D0**X (1)) *(1-0.6D0**X(2)) *(1-0.4D0O**X (3)) *(1-0.2D0**X(}))
+ 0.995D0

DOTI=1,4

C(I) = SIN(IPI*X(I))

END DO

CALL FINISH-CODELIST

END PROGRAM RELIABILITY

Ezerts from the output file

Output from FIND-GLOBAL-MIN on 02/09/2005 at 13:06:25.

Version for the system is: November 22, 2003
Boz data file name is: reliability. DT1
Initial box:

[0.2000D + 01,0.5050D + 02] [0.2000D + 01,0.5050D + 02]
[0.2000D + 01,0.5050D + 02] [0.2000D + 01,0.5050D + 02] (lines deleted)
LIST OF BOXES CONTAINING VERIFIED FEASIBLE POINTS:

Box no.: 1
Bozx coordinates:
[0.3099D + 02,0.3301D + 02] [0.1400D + 02,0.1400D + 02]
[0.7000D + 01,0.7000D + 01] [0.4000D + 01,0.4000D + 01]
PHI: [0.1190D + 03,0.1210D + 03]
(lines deleted)
Box contains the following approzimate root:
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Table I. Results for Example 2

Method Solution Cost  Reliability

Gy (28,14,8,4) 120  .99504
G> (30,15,7,4) 120  .99506
Gs (32,14,7,4) 120  .99519
G4 (30,13,8,4) 120  .99521
LM (30,14,8,4) 122  .99573

0.8200D+02 0.1400D+02 0.7000D+01 0.4000D+01

OBJECTIVE ENCLOSURE AT APPROXIMATE ROOT:
[0.1200D + 03,0.1200D + 03]
(lines deleted)

Boz no.: 2
Bozx coordinates:
[0.2905D + 02,0.3095D + 02] [0.1300D + 02,0.1300D + 02]
[0.8000D + 01,0.8000D + 01] [0.4000D + 01,0.4000D + 01]
PHI: [0.1191D + 03,0.1209D + 03]
Box contains the following approzimate root:
0.3000D+02 0.1300D+02 0.8000D+01 0.4000D+01

OBJECTIVE ENCLOSURE AT APPROXIMATE ROOT:
[0.1200D + 03,0.1200D + 03]

ALGORITHM COMPLETED WITH LESS THAN THE MAXIMUM NUMBER,
20000 OF BOXES.
Number of bisections: 286
No. dense interval residual evaluations — gradient code list: 4292
Total number dense interval constraint gradient component
evaluations: 48208
Total number dense point constraint gradient component
evaluations: 312
(lines deleted)
Number Fritz-John matriz evaluations: 383
Total number of bozes processed in loop: 360
BEST-ESTIMATE: 0.1200D+03
Qwerall CPU time: 0.1054D+038
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The original system cost is, Cy = 15, the minimum cost for the unit redundancy concept by
using GlobSol is C = 120 = 8Cy, and by using LM is C = 122 = 8.13C, (see Table I). The
dual optimization problem, to mazimize the overall system reliability with a mazimum cost of 120,
was also solved with GlobSol obtaining similar results. In both problems the optimum solution was
(21,%9,23,24) = (30,13,8,4), with a total cost of C = 120 and a mazimum system reliability of
R = .9952. when the cost constraint is changed to a mazimum cost of 123, the optimum solution
obtained with GlobSol and LM is the same (x1, x2, x3, z4) = (30, 14,8, 4), with a total cost of C = 122
and a mazimum system reliability of R = .9957.

EXAMPLE 3. Similar to Example 2, with unit costs ¢c; = 1, co = 2, and c3 = 3.

Table II. Results for Example 4

Method Solution Cost Reliability

Gy (13,8,6) 47  .990718
Gs (11,9,6) 47  .990353
LM (12,9,6) 48  .991795

The original system cost is Cy = 6, the minimum cost for the unit redundancy concept by using
GlobSol is C = 47 = 7.83Cy and by using LM is C = 48 = 8C)y (see Table II). The dual optimization
problem, to mazimize the overall system reliability with o maximum cost of 47, was also solved
with GlobSol obtaining similar results. In both problems the optimum solution was (r1,z2,3) =
(13,8,6), with a total cost of C' =47 and a mazimum system reliability of R = .990718.

EXAMPLE 4. Similar to Example 1, with unit costs c1 = 2, co = 3, c3 = 4, and ¢4 = 5, and
reliability values py = pa = p3 = ps = 0.5. Design a new system configuration incorporating the
unit redundancy concept to achieve an overall system reliability of R = 0.98 at minimum cost.

Table III. Results for Example 4

Method  Solution  Cost  Reliability

Gy (8,8,8,7) 107  .980606
LM (9,8,8,7) 109  .982528
The original system cost is Cy = 14, the minimum cost for the unit redundancy concept by

using GlobSol is C = 107 = 7.64Cy and by using LM is C = 109 = 7.79Cy (see Table III). The
dual optimization problem, to mazimize the overall system reliability with a mazimum cost of 107,
was also solved with GlobSol obtaining similar results. In both problems the optimum solution was
(x1,x9,x3,24) = (8,8,8,4), with a total cost of C = 107 and a mazimum system reliability of
R = .980606.
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Table IV. Data for Example 5

Stage, j 1 2 3 4

rj 0.80 0.70 0.75 0.85
c1j 1.2 2.3 3.4 45
Cc2;j 5 4 8 7

b1 = 56

b, =120

EXAMPLE 5. A 4-stage series system with two linear constraints is formulated as a pure integer
programming problem. The decision variables, © = (1,22, %3,%4), are the number of redundancies
at each stage. The problem is formulated as follows

mazimize R = H[l — (1L —mr)*]

4

=1

subject to Zcijxi < b, 1=12

(14)

With the data given in Table IV, the real solution obtained by the LM and the Kuhn-tucker
conditions is, x = (5.11672,6.30536, 5, 23536, 3.90151), using interval and LMBB techniques give
the same integer solution x = (5,6,5,4). Even both methods provide the same conclusions about
the decision variables, interval techniques provide a more rigorous reasoning by guaranteeing the

optimality for this problem.

EXAMPLE 6. A 5-stage series system with three nonlinear constraints is formulated as a mized
integer programming problem. Both the number of redundancies, x;, and the component reliability,

rj, are to be determined. The problem from (Tillman et al., 1985) is

x; > lare integers;

mazximize Rg(x,

4

=1

j*l

g2(z,7m) = Z a;(

5

g3(x) = Y wjzjexp(z;/4)) —

J=1

0 <r; <1;for allj.

r) = [[0 -1 —r)"]

subject to ¢g1(x) = ijx? —-P<0

lnr

)% (z; + exp(z;/4)) —C <0 (15)

W <0
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With the data given in Table V, the problem was solved with the methods: the LMBB, and
with a combination of the sequential method, Hooke and Jeeve Pattern Search, and the heuristic
redundancy allocation method HJHRA (Tillman et al., 1978).

The results summarized in Table VI show that the LMBB method with the solution (Rs,r,x) =
(.9298,.7796, .8007,.9023, .7104, .8595, 3, 3,2, 3,2) is superior to the HIHRA method with the solu-
tion (Rg,r,z) = (.9149,.7582,.8000,.9000, .8000, .7500, 3, 3,2,2,3) given in (Tillman et al., 1978).
This mized integer programming problem has many local optima. The HJHRA method has the
drawback of being trapped by a local optimum, and the LMBB method overcomes this drawback and
it is quite effective. Interval techniques provide the optimal solution for the redundancy allocation
problem related to this problem. We could not verify the solution provided by the LMBB method to
the mized integer programming problem by using interval techniques in our computer systems.

Table V. Data for Example 6

j aj Dj wj P C Y%

1 2.33x 107 1 7

2 1.45 x 107° 2 8

3 5.41 x 1075 3 8 110 175 200

4 8.05 x 107° 4 6

5 1.95 x 107° 2 9

B, =15, j=1,...,5 t=1000
Table VI. Comparison of Methods
LMBB HJHRA

Number of redundancies x=(3,3,2,3,2) x=(3,3,2,2,3)
Component reliability r = (.7796,.8007,.9023, .7104, .8595) r = (.7582,.8000, .9000, .8000, .7500)
System reliability Rs = .9298 Rs = .9149
Slack of g1 27 28
Slack of g 0.00001 0.033727
Slack of g3 10.57248 1.4118

7. Conclusions

Interval arithmetic techniques, proved to be an effective tool to determine optimal design configura-
tions for systems with unit redundancy, and can be used to solve reliability-redundancy allocation
problems. Most of the results were obtained in 0.1302D+01 CPU seconds, and they are quite
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convincing when compared with those obtained in (Way et al., 1987) with LMBB technique that
involved 3 CPU seconds. Interval arithmetic techniques are competitive alternatives since they
provide management with different options and flexibility.
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