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Abstract: In chip design, one of the main objectives is to decrease its clock cycle; however, the 
existing approaches to timing analysis under uncertainty are based on fundamentally restrictive 
assumptions. Statistical timing analysis techniques assume that the full probabilistic distribution 
of timing uncertainty is available; in reality, the complete probabilistic distribution information is 
often unavailable.  Additionally, the existing alternative of treating uncertainty as interval-based, 
or affine, is limited since it cannot handle probabilistic information in principle. In this paper, a 
fundamentally new paradigm for timing uncertainty description is proposed as a way to 
consistently and rigorously handle partially available descriptions of timing uncertainty. The 
paradigm is based on a formal theory of interval probabilistic models that permit handling 
parameter uncertainty that is described in a distribution-free mode - just via the range, the mean, 
and the variance. This strategy permits effectively handling multiple real-life challenges, 
including imprecise and limited information about the distributions of process parameters, 
parameters coming from different populations, and the sources of uncertainty that are too difficult 
to handle via full probabilistic measures (e.g. on-chip supply voltage variation). Specifically, 
analytical techniques for bounding the distributions of probabilistic interval variables are 
proposed. Also, a provably correct strategy for fast Monte Carlo simulation based on probabilistic 
interval variables is introduced. A path-based timing algorithm implementing the novel modeling 
paradigm, as well as handling the traditional variability descriptions, has been developed. The 
results indicate the proposed technique can improve the upper bound of the 95th-percentile circuit 
delay, on average, by 4.8% across the ISCAS’85 benchmark circuits, compared to the worst-case 
timing analysis that uses only the interval information of the partially specified parameters. 
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1. Need for New Models of Uncertainty: Probabilistic Interval Analysis 
 
The area of statistical static timing analysis (SSTA) has recently made substantial progress in 
terms of algorithmic and modeling advances. Efficient block-based and incremental computation  
techniques based on the first-order delay model are now well developed (Visweswariah et al, 
2004; Chang and Sapatnekar, 2003). Extensions of the basic framework of SSTA to higher-order 
models have been recently investigated to capture non-linear effects and non-Gaussian process 
parameter distributions (Zhan et al, 2005; Chang et al, 2005; Zhang et al, 2005). Statistical delay 
computation for interconnect based on affine interval arithmetic has been studied (Ma and 
Rutenbar, 2004). These developments in the theory of SSTA came in response to the increased 
variability in the process parameters, the inadequacy of the corner models, and the need to use 
explicit probabilistic descriptions of key process parameters. 

The fundamental assumption behind all of the above techniques is that the probabilistic 
descriptions are readily available. In all the algorithms for SSTA (Visweswariah et al, 2004; 
Chang and Sapatnekar, 2003; Zhan et al, 2005; Chang et al, 2005; Zhang et al, 2005), the 
complete knowledge about the distributions of process and environmental parameters is given, 
e.g. it is assumed that the process parameters are normally distributed, with the known mean and 
variance. Then, first-order models link delay variability with process parameters, allowing delay 
to be normally distributed as well (Visweswariah et al, 2004; Chang and Sapatnekar, 2003). If 
linear delay models are not sufficiently accurate, higher-order models can be used, at the cost of 
the resulting non-Gaussian distribution of delay. The non-Gaussianality of process parameters or 
timing can be handled by numerical processing leading to a substantial (3-10X) increase in the 
run-time of the algorithm (Chang et al, 2005) 0. 

In this paper we argue that in a practical setting of cutting-edge IC design the full 
probabilistic information about parameter uncertainty is not available. The process 
characterization data is often incomplete and of limited nature, especially at the ramp-up phase of 
the industrial manufacturing. With limited number of measurements and characterization lots, 
there may be a large uncertainty in the statistic metrics (the mean and the variance) of the process 
parameters. Some sources of on-chip uncertainty cannot be described probabilistically: supply 
voltage (Vdd), temperature, and systematic variation sources with the unit of repeatability larger 
than a single chip (e.g. aberration-caused Lgate variation).  

Interval and affine methods, which tremendously improve on the conservatism of the 
traditional interval techniques, can be used in circuit timing analysis (Ma and Rutenbar, 2004). 
However, in many instances, some but not full probabilistic information is available. For 
example, variation of supply voltage in time depends on the input vectors applied to the chip. 
Because of the difficulty of performing temporal input-dependent analysis, the uncertainty about 
supply voltage is most typically represented by the range information (Ernst et al, 2004), 
however, the mean and, possibly, the variance of the distribution can be estimated more easily. 
For example, the supply voltage may vary between 90-100% of the nominal value, with the mean 
equal to 97% of the nominal value. The distribution is unknown because its characterization is 
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computationally expensive (Kouroussis et al, 2005). Statistical STA cannot meaningfully handle 
such a realistic scenario. The affine methods are fundamentally non-probabilistic and their 
extensions to handling statistics are heuristic in nature (Ma and Rutenbar, 2004). 

Thus, in addition to the existing techniques, a new way of treating uncertain variables with 
partial probabilistic information is needed to enable practical design under uncertainty. This paper 
develops a solution of timing analysis under uncertainty based on the principles of probabilistic 
interval models. These models have been developed over the last decade in the field of robust 
statistics, reliable computing, and computer science  0(Kouznetsov, 1991). They are based on the 
generalization of classical random variables to variables described by families of distributions. 

Conceptually, the most general description of an uncertain variable is an interval, 
e.g. [ , ]∈x x x . Such descriptions form the basis of interval arithmetic and its enhancement in 
terms of affine arithmetic (Moore, 1966; Stolfi and de Figueiredo, 2003). An interval description 
does not permit making statements about which values of the variable are more likely. Thus, if in 
addition to the range, the statistic metrics, such as mean and variance, are known the interval 
methods are incapable of utilizing this additional information in computing the arithmetic 
operations (+, -, *, /, max, min). Probabilistic interval analysis is a natural synergy of pure 
interval arithmetic and probabilistic analysis. It permits the use of partial statistic information 
(e.g. range, mean, and variance) to quantify the likelihood of the variable in the range. The 
estimates are guaranteed to be conservative regardless of the precise form of the distribution. For 
the fully specified random variable (e.g. Gaussian) the most general representation is its 
cumulative distribution function (cdf) (Feller, 1968). For a partially-specified random variable, 
the most general representation is a set of cumulative distribution functions, which can be 
represented as bounds on the cdf, forming a so-called probability box. 

Following the above philosophy, this paper develops timing analysis techniques that produce 
reliable timing estimates even if the characterization data is incomplete. The essential 
contribution of this paper is in handling incomplete and imprecise uncertainty description. 
Compared to affine methods, the developed techniques can handle both the interval and 
probabilistic descriptions consistently and formally. The paper describes in detail how the 
probability boxes can be computed effectively. Importantly, the proposed techniques are 
compatible with the existing SSTA tools and can handle both full and partial probabilistic 
descriptions simultaneously. 

This paper is organized as follows. Section 2 describes the paradigm of modeling non-
probabilistic uncertainty based on probabilistic interval analysis, which enables us to use partial 
statistic metrics for timing analysis. The computation of path delay due to Gaussian variables and 
probabilistic interval variables is derived. Besides, a statistical technique of robustly estimating 
circuit delay distribution is proposed. The experimental results are presented in Section 3. 
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2.  Timing Analysis with Partial Probabilistic Information 
 
In this section, an application of the new probabilistic interval techniques to timing analysis is 
introduced. First, the construction of the path-delay probability box is described. Second, the 
bound of the circuit delay distribution is constructed. Finally, a method to combine the results of 
the traditional SSTA with the above derivations is described.  
2.1. PATH DELAY COMPUTATION 
 
The timing model used in this work is based on the additive delay model containing both the 
uncertainty due to classical random variables and the newly introduced probabilistic interval 
variables. The probabilistic interval variables (as opposed to random variables) are variables for 
which only partial statistic metrics, mean and variance, are available in addition to the known 
range, or interval. The delay model can be expressed as: 

  , , , ,
1 1

n m

i i i j i j i k i k
j k

d a x bμ
= =

= + Δ + Δ∑ ∑ y   (1)

where  is the mean value of the gate delay, iμ ,Δ i jx  is a zero-mean Gaussian random variable, 
and  is a zero-mean probabilistic interval variable. The coefficients a,Δ i ky i,j and bi,k are the 
sensitivities of gate delays, which are the first-order derivatives of gate delays with respect to the 
variables. Note that this delay model can be easily transformed into an affine arithmetic 
representation if variables are scaled such that the variables are limited within [-1, 1].  

A concise representation of the gate delay model can be obtained by resorting to the matrix 
form: 

 T T
i i i i id A X Bμ= + + iY

iA a a= ,,1[ ]Ti iiB b b= ,,1[ ]Ti i niX x x= Δ Δ

m

TY

TY

 (2)
where the matrices , ,  , and 

. 
,,1[ ]Ti i n m

,,1[ ]Ti iiY y y= Δ Δ
The variation of parameters can be further decomposed into the linear sum of perfectly 

correlated die-to-die components (Xdd, Ydd), and independent within-die components (Xi,wd, Yi,wd): 
 , ,

T T T
i i i i i ii wd dd i wd ddd A X A X B Y Bμ= + + + +  (3)

The path delay of a path can be represented by:  jP

 

, ,( )
j

j j j

j T T T
i i i wd i dd i i wd i dd

i P

i i i
i P i P i P

D A X A X B Y B

g u

μ

μ
∈

∈ ∈ ∈

= + + + +

= + +

∑

∑ ∑ ∑
 (4)

where , and  ,
T T

i i ii wd ddg A X A X= + ,
T T

i i ii wd ddu B Y B Y= +
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)It is convenient to separate the contributions of random delay uncertainty and 

probabilistic interval uncertainty : 

( RD

( )PID R

j

j
i

i p
D g

∈
= ∑ and . Computing 

the path delay distribution when the gate delays are normal random variables is straightforward. 
Therefore, we focus on the delay variation resulting from probabilistic interval variables i.e. . 
The range of the gate delay variation, , is: 

j j

j
iPI

i P i P

D uμ
∈ ∈

= +∑ ∑ i

j
PID

iu

 , , , ,
1 1

,
m m

i i k i k i k i k
k k

u b y b y
= =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∈ Δ Δ∑ ∑ (5)

where ,i kyΔ and ,i kyΔ are the lower and upper bound of . Then we can compute the range 

of . 
,i kyΔ

j
PID

Because the mean values of probabilistic interval variables are zero, the mean of the path 
delay is: 

 [ ]
j

j
iPI

i P
E D μ

∈
= ∑  (6)

 
The variance of the path delay can be computed by: 

 { } ,
j j

j T T
i i ii wd ddPI

i P i P i P
Var D B B B B

∈ ∈

⎛ ⎞ ⎛⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎟ ⎟⎜ ⎜⎝ ⎠ ⎝

= Σ + Σ∑ ∑
j

i
∈

⎞

⎠
∑

)i n

(7)

where and are the covariance matrices of and , respectively. Since different 
kinds of parameters are uncorrelated, the covariance matrices are actually diagonal matrices, with 
the diagonal elements equal to the variance of variables. 

,i wdΣ ddΣ ,i wdY ddY

While the ultimate objective of the paper is to derive the circuit delay distribution, being able 
to describe individual path delay distributions is also essential. Now that the range, the mean and 
the variance of  are known, the challenge is to compute the probability box that contains the 
family of distributions satisfying the partial statistical information that is available. Actually, the 
computation of the probability bound can be formulated as an optimization problem: 

j
PID

Let be a possible cumulative distribution function of a random 
variable X, and satisfies the partial statistical information: 

and

: [0,1] (1iF ℜ → ≤ ≤
iF

 2[ ] , [ ] ,E X Var Xμ σ= = [ , ]X X X∈ . The lower bound for the cumulative probability of X at 
a specific value x, can be computed by solving the optimization problem considering all 
possible : iF

( )max  s.t. ,  1ip F x p i≥ ≤ ≤ n . 
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Similarly, the upper bound can be computed by: 
 

( )min  s.t. ,  1ip F x p i≤ ≤ ≤n . 
 

However, because we seek a fast analytical solution, we prefer to use an inequality, which is 
a combination of the Chebyshev inequality and Cantelli inequality (Godwin, 1964). This 
inequality applies when, in addition to the first two moments of the variable, its support (range) is 
also known, resulting in a tighter bound on the cdf. The upper bound of the cumulative 
probability of a random variable X is given by (Ferson, Kreinovich, Ginzburg, Myers, and Sentz, 
2002): 
 

 

( )
( )
( )

2 2 2

2 2 2

0                                            
1 (1 ( ) )                ( )
1 ( ) (1 )       ( )

                                                              

P X x x X
P X x x X x X
P X x m my s y X x

μ σ μ σ μ
μ σ μ

≤ = <

≤ ≤ + − ≤ < + −

≤ ≤ − − + − + − ≤

( )
2

2
             and  ( )

1                                           ( )
x X

P X x X x
μ σ μ

μ σ μ
< + −

≤ = + − ≤

 (8)

 
where μ denotes the mean, 2σ denotes the variance, X is the lower bound, X is the upper 
bound, ( ) ( )y x X X X= − − , ( ) ( )m X X Xμ= − − , and 2 2 ( )2s X Xσ= − . 

Similarly, the lower bound of the cumulative probability is: 
 

 

( )
( )

( )

2

2 2 2

2

2 2

0                                          ( )
1 ( (1 ) )      ( )

                                                                    and  ( )
1 (1 ( ) )

P X x x X
P X x m y s m y X x

x X
P X x x

μ σ μ
μ σ μ

μ σ μ
σ μ

≤ = < + −

≤ ≥ − + − − + − ≤
< + −

≤ ≥ + −

( )
2              ( )

1                                          
X x X

P X x X x
μ σ μ+ − ≤ <

≤ = ≤

 (9)

 
Thus, expressions (8) and (9) can be used to compute the bound for the path delay cumulative 

probability. An example of applying this set of inequalities is shown in Figure 2(a). 
The same analytical structure can be used when the mean and variance are known only with 

certain accuracy (Ferson, 2002). First, the maximum of the variance should be used in the 
generalized Chebyshev inequality because it primarily determines the span of the cdf. Second, the 
upper bound of the mean should be used when computing the lower (right-side) bound of the 
probability using (9), because it leads to the worst lower bound of the probability. Similarly, the 
lower bound of the mean should be used in (8).  
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j

)

) )

)

Having computed the distribution of path delay variation due to probabilistic interval 
variables, now we combine it with the delay variation resulting from Gaussian variables. Since 
parameters of different categories are independent, it means that the delay variations and  
are independent, and the bound for the cdf of the sum can be computed by convolution: 

R
jD j

PID

 
 ( ) ( ) ( )

PI R

j jCDF D CDF D f D= ⊗ (10)
where  is the probability density function of . We use the lower and upper bounds 

of in convolution respectively, and then obtain the bounds of . Finally, we 
have the bound for the path delay distribution, which enables computing the bound of delay at 
any quantile. 

(
R
jf D

R
jD

(
PI
jCDF D ( jCDF D

 
2.2. CIRCUIT TIMING COMPUTATION 
 
In this section, we develop techniques for efficient construction of probability boxes on the 
distribution of circuit delay, i.e. the maximum of all path delays. New techniques are proposed to 
perform this task efficiently and robustly. From (4), the bound of the circuit delay can be 
computed by: 
 

 ( ) (

( ) ( )
1

1
max

1 1

max( ,..., )

max ,...,

max ,..., max ,...,
N

N

i i i i i i
i P i P

N N
R R PI PI

D D D

g u g u

D D D D

μ μ
∈ ∈

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

=

= + + +

≤ +

∑ ∑ +  (11)

 
Let ( )1

max max ,..., N
R R RD D= D  be the term due to random probabilistic variability, and the 

second term ( )1
max max ,..., N

PI PI PID D= D  be the term due to interval-probabilistic variability. In 

deriving the probability box for , we adopt a strategy in which the sources of uncertainty 
described probabilistically are separated from interval probabilistic uncertainty. The distribution 
of can be computed by the statistical timing analysis algorithm based on the first-order 
delay models (Visweswariah et al, 2004; Chang and Sapatnekar, 2003; Agarwal et al, 2003; 
Orshansky and Bandyopadhyay, 2004). Therefore, in the remainder, we concentrate on the 
computation of . The two terms are then combined to generate the bounds on the full 
distribution of circuit delay.  

maxD

maxRD

maxPID

In constructing the probability box for the circuit delay distribution, ideally, we would like to 
use analytical means as was done in Section 2.1. Expressions (8) and (9) can be used to find the 
bounds on the distribution of , once the mean, the variance, and the range are known. maxPID
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However, in general functions of probabilistic interval variables, , finding the bounds 
on the variance is NP-hard (Ferson,

1,( ..., )Nf u u
 Ginzburg, Kreinovich, Longpré, and Aviles, 2002). We show 

below that for convex functions the exact bound on the variance can be computed. Let us first 
establish the convexity of the term . The path delay  is a linear and 

thus convex function of . The circuit delay is given by  which is 
also a convex function of probabilistic interval variables (Boyd and Vandenberghe, 2004). 
Convexity is essential to our efficient analysis strategy, since as the theorem below shows 
determining the probability bound and moments of distributions of convex functions is much 
easier. 

maxPID ,j
iPID u i= ∈∑ jP

Diu
1

max max( ,..., )NPI PI PID D=

Our strategy is essentially based on the development of the robust (guaranteed) approach to 
Monte Carlo sampling from an unknown distribution (Orshansky et al, 2006). The Monte-Carlo 
simulation is a widely-used technique to solve complex numerical problems (Fishman, 1995). It 
can be used as a powerful tool for estimating the timing performance of integrated circuits when 
the distributions are known (Jyu et al, 1993; Lemke et al, 2002). Without the full distributional 
knowledge of the parameters, a possible way to perform the simulation is to heuristically generate 
a variety of distributions that correspond to the given partial information. However, this method is 
not mathematically robust because it is impossible to enumerate all possible distributions. 
Besides, the high run time accounting for numerous distributions prevents this method from 
practical use. We show that for convex functions the robust Monte Carlo simulation can be 
rigorously and efficiently performed. Compared to the traditional approach to Monte-Carlo 
simulation, the selection of distribution is justified in our simulation strategy; only distributions 
that cause the extreme value of the target function need to be considered. Therefore, this selective 
strategy is guaranteed to produce a bounding distribution, and achieves high efficiency in terms 
of the run time. Theorem 1 effectively defines the algorithm for such robust Monte Carlo 
(Orshansky et al, 2006). 
 

Theorem 1. Let { }1,..., Mv v be a set of independent random variables, where [ , ]i iv v v∈ i , 

and  for i=1 to M. Let [ ]i iE v E= 1( ,..., )Mf v v be a non-negative convex function of the random 
variable vi, for i=1 to M. The probabilistic bound of 1( ,..., )Mf v v , at a confidence level , is defined 
as: 

α

 { }1min : ( ( ,..., ) )   MD D P f v v Dα α= ∈ ≤ ≥

Assume D decreases if any interval α [ , ]i iv v  is narrowed down.  

Then, among all possible cdfs of { :  that correspond to the partial statistical 
information of the range and the mean, the bound D achieves the maximum value when each 
random variable  follows the 2-point distribution, 

1.. }iv i M=
α

iv
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( )

( )
i i

i i

P v v p

P v v p

= =

= =
i

i

 (12)

where i
i

i i

v E
p

v v
−=
−
i , and i i

i
i i

E v
p

v v
−

=
−

. 

Effectively, Theorem 1 reduces the number of possible distributions that must be considered 
in order to find the bounding distribution, which will result in a sought probability box for the 
function of probabilistic interval variables. However, this robust Monte Carlo simulation still 
suffers from the common problems of Monte Carlo - the slow decrease of the estimation error, 
especially, at high percentiles. To address this concern, we have developed a fast hybrid 
approach, the fast robust Monte Carlo simulation, in which robust Monte Carlo is used to get a 
quick estimate of the moments (a much faster computation) and then analytical techniques are 
used for establishing bounds. The justification of the technique is based on the corollary to 
Theorem 1. 
Corollary. The kth moment of the function, , where , achieves the 
maximum value when each random variable  follows the 2-point distribution in (12). 
Furthermore,  achieves the minimum when . 

[ ]kE y 1( ,..., )My f v v=

iv

[ ]kE y ( )i iP v E= = 1

Therefore, using the above sampling procedure also guarantees that the bounds of 
( )1,..., ME f v v⎡

⎢⎣ ⎦
⎤
⎥  are accurately estimated.  

In the fast robust Monte Carlo simulation, a limited number of random samples are drawn 
using the algorithm following Theorem 1. The corollary guarantees that we will get an accurate 
estimate of the range of the mean circuit delay. As for the variance of the circuit delay, it can also 
be bounded by the sample variance because the 2-point distribution in (12) results in the 
maximum variance of gate delays thus maximizes the variance of path delays and the circuit 
delay. Therefore, expressions (8) and (9) can be then used to compute the bound of the 
distribution analytically.  

Figure 1 illustrates the algorithm of the fast robust Monte Carlo simulation. This proposed 
strategy estimates the upper bound of sample mean and sample variance with only a limited 
number of runs. In practice, a few hundred runs are sufficient to generate an estimate with 
reasonable accuracy. This can be verified by considering the standard error of the sample mean 
and the confidence level of the true mean i.e. the mean of the population. From (Rice, 1988), the 
99% confidence interval of the true mean (  for a variable X is)μ 2.575 XX Nσ± , where X is 

the sample mean,  is the true standard deviation, and N is the number of samples. For 
example, consider a circuit with extremely large span in the delay domain: the 3 value of circuit 
delay is 45% of the mean. Then we estimate the confidence level: 

Xσ
σ
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( 2.575 0.15 ) 0.99P X Nμ μ− ≤ ⋅ = . 

The error of the sample mean for N = 500 is less than 1.7% with probability equal to 0.99, 
which has a very limited impact on the result of using expressions (8) and (9). Thus, the accuracy 
of Monte Carlo for such a sample size is acceptable for our analysis. 

Once the lower bound on the distribution of  is generated, the overall circuit delay 
distribution  can be obtained by combining  and . Since these two 
components of delay variation are independent, the distribution of the sum can be computed by 
convolution, similar to (10).  The lower bounds of the cdf (i.e. the upper bound of the delay) are 
used in the convolution because it is a more important metric for circuit timing. 

maxPID

maxD maxPID maxRD

 

 
 

for i = 1..N 
Generate a sample for each die-to-die parameter. 
for each gate 

Generate a sample for each within-die parameter. 
Compute gate delay. 

end 
Use static timing analysis to compute the circuit delay, Di. 

end 
Compute the mean and the variance of samples: 

=

=

=

= − −

∑

∑

1

2 2

1

( ) 1

N

i
i

N

D i
i

D D N

s D D N

. 

WithD , 2
Ds , and the range of the circuit delay, use (9) to compute the lower bound of the cdf. 

Figure 1. Algorithm of the fast robust Monte Carlo simulation. 
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Figure 2. The path delay analysis algorithm improves the worst-case path delay by 9.0% for the critical path of circuit 

c6288 at the 95th percentile. a) Delay due to probabilistic interval variables; b) Total path delay. 
3. Experiments 

 
The algorithms for timing analysis using partial description of uncertainty described in Section 2 
have been implemented in C++, and have been tested on a set of combinational ISCAS'85 
benchmark circuits. Variability of process parameters (L, Vth, and Tox) and the environmental 
fluctuation (Vdd) are taken into account. The 3 values for process parameters are set at 20% of 
the mean, including 50% die-to-die variations. The standard deviation of V

σ
dd is 4% of the 

maximum, and the range of Vdd is 84-100% of the maximum value. In the experiments, Vth, Tox 
and Vdd are modeled as probabilistic interval variables. Sensitivities of parameters are from 
SPICE simulations for a cell library of BPTM 0.13um technology (Cao et al, 2000).  

The proposed timing analysis algorithms separately handle the contributions of the random 
probabilistic uncertainty and the interval probabilistic uncertainty. Thus, the comparison of our 
algorithms and the worst-case timing analysis i.e. only using the range (interval) of the interval 
uncertainty, should be done in two phases. We first compare the bounds of j

PID computed by the 
proposed algorithm and the worst-case timing analysis, then compare the bound of the total delay, 
which is the sum of j

PID and j
RD . Note that the sum of the bound from the worst-case timing 

analysis for interval uncertainty and j
RD can be computed by simply shifting the cdf of j

RD by the 
worst-case delay value. A similar comparison is also made for the bounds on circuit delay 
distribution. 

Figure 2(a) illustrates the importance of probabilistic interval analysis in path delay analysis. 
The upper bound of the 95th- percentile path delay ( j

PID ) from the proposed algorithm for the 
critical path of circuit c6288 is only 8.4% over the mean path delay, while the worst-case timing 
estimate is 16.2% over the mean. Therefore, the proposed path timing analysis algorithm reduces 
the worst-case timing estimate by 6.7%. Similarly, the 95th-percentile total path delay 
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( j j
R PD D+ I ) is 20.2% over the mean for the proposed algorithm, which is a better bound than the 

worst-case delay (32.1% over the mean) in Figure 2(b). Thus, the proposed strategy improves the 
worst-case estimate by 9.0% for the overall path delay at the 95th percentile. 

For circuit delay distribution, the proposed statistical technique has been run on a Sun 
workstation with 1280 MHz CPU and 8GB memory. We ran the fast robust Monte Carlo 
simulation (FRMC) to estimate the sample mean and the variance using 1,000 samples, and then 
analytically computed the lower bound of the cumulative probability. The run time of the fast 
robust Monte Carlo ranges from 12 to 114 seconds. Figure 3 shows the circuit delay variation due 
to probabilistic interval variables of circuit c7552, from the proposed statistical technique and the 
worst-case timing analysis. It shows that FRMC is able to provide a superior bound to the worst-
case delay at lower than the 87th percentile.  

For the total circuit delay ( ), FRMC improves the estimates from the worst-case timing 
analysis by 4.8% across the benchmark circuits, for the 95

maxD
th percentile delay. Table I shows the 

upper bound of the total circuit delay at high percentiles (90th and 95th percentiles) for FRMC, and  
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Figure 3. Upper bounds for circuit delay due to probabilistic interval variables for circuit c7552. The fast Monte Carlo 

simulation provides a bound superior to the worst-cast timing estimate at lower than the 87th percentile. 
 

the worst-case timing analysis. Figure 4 shows an example of the total circuit delay for the circuit 
c7552, in which FRMC reduces the worst-case delay estimate by 4.5% at the 95th percentile. 
Indeed, the joint use of SSTA and our statistical technique for probabilistic interval variables is a 
promising synergy, and it can be easily extended to incorporate more circuit parameters, to fully 
assess the impact on timing performance. 

Another important feature of the proposed techniques is the capability of handling skewed 
distributions. Some environmental parameters are not symmetrically distributed (e.g. Vdd); 
however, the normal assumption implies the distribution is symmetrical to the mean, which may 
cause inaccurate estimation of the circuit delay. Figure 5(a) compares path delay distributions of 
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two cases with the same interval and variance of Vdd uncertainty: the right-skewed Vdd 
uncertainty and the symmetrical case. Because the voltage drop increases delay, the right-skewed 
Vdd uncertainty decreases the upper bound of delays, compared to the center-meaned Vdd 
distribution. From Figure 5(b), the similar trend can be also observed in the distribution of the 
total circuit delay. Thus, our timing analysis algorithm can be used to handle asymmetrical 
distributions (e.g. non-Gaussian), and provide a more accurate timing estimate. 
 

4. Conclusions 
 
In this paper, we propose a set of statistical techniques for estimating the path and circuit delay 
distributions. Given partial statistic metrics of the uncertainty, the proposed algorithm is able to 
analytically compute the bounds of the path delay. A fast robust Monte Carlo simulation 
technique is proposed to assess the impact of the uncertainty, and estimate the upper bound of the 
circuit delay. With justified selection of the distribution used in the simulation, the proposed 
technique can efficiently provide a guaranteed bound of the circuit delay distribution. 
 

Table I. Upper bounds for circuit delay at high percentiles and the run time of the proposed technique. 
 

Number Fast Robust Monte Carlo Simulation Worst-case Delay  

of 90th Percentile 95th Percentile Run 90th 
Percentile 

95th 
Percentile 

Gates Time (s) Delay Delay 
Circuit 

 
Delay (ps) Reduction (%) Delay (ps) Reduction (%)

  (ps) (ps) 
c880 456 2383 5.62 2467 4.97 12 2525 2596 

c1355 605 2264 4.59 2335 4.26 18 2373 2439 
c1908 975 2820 5.56 2919 4.89 26 2986 3069 
c2670 1544 3124 5.65 3232 5.08 38 3311 3405 
c3540 1787 4097 5.49 4237 4.94 52 4335 4457 
c6288 2448 17547 5.28 18081 4.82 87 18526 18996 
c5315 2600 3579 5.49 3703 4.88 79 3787 3893 
c7552 3874 3136 4.88 3236 4.46 114 3297 3387 
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Figure 4. Upper bounds for the overall circuit delay of c7552. FRMC improves the worst-case delay  

estimate by 4% at the 95-percentile. 
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Figure 5. The right-skewed Vdd distribution improves bounds of (a) path delay;  

and (b) circuit delay of center-meaned Vdd distribution. 
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