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Abstract. In this paper we are concerned with numerical methods for fluid-structure interaction
(FSI) problems and with their verification and validation. The fluid-structure interaction modelling
is very complicated problem, where the most complicated and cruicial part is modelling of the fluid
flow. Therefore the main interest of this paper is the numerical approximation of two dimensional
incompressible viscous fluid over a flexibly supported profile. In technical problems the relevant
Reynolds numbers are usually very high (104 − 106) and the fluid flow is turbulent. The correct
numerical approximation requires very fine mesh refining as well as very small time steps involved in
the computation. On the other hand in many technical applications the Reynolds Averaged Navier-
Stokes equations are being used together with a suitable turbulence model. Here, both (laminar)
Navier-Stokes equations as well as Reynolds Averaged Navier-Stokes equations are considered,
numerically approximated by the Finite Element Method (FEM), stabilized by Galerkin-Least-
Squares technique, and the obtained solution compared to the experimental data.
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Nomenclature

L(t),D(t),M(t) = aerodynamic lift and drag force and torsional moment

m = mass of the airfoil

Sα, Iα = static and inertia moments around the elastic axis EO

khh, kαα = bending and torsional stiffness

l, c = airfoil depth and chord

α, h = rotational and vertical displacements around the elastic axis EO

Gt = computational domain occupied by fluid at time t

∂Gt = boundary of the domain Gt

P = time averaged kinematic pressure,

ρ, ν = constant fluid density and (laminar) kinematic viscosity of the fluid

νT = turbulent kinematic viscosity

τij , σij = fluid stress tensor and Reynolds stress tensor

Ωij = tensor rotation of the fluid velocity
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1. Introduction

The fluid-structure interaction problems can be met in many technical applications (for details see,
e.g., (Dowell, 1995; Naudasher and Rockwell, 1994)). The treatment of fully coupled interaction
problem of a structure and fluid flow is very difficult. Therefor, it is usually modelled with several
simplifications. The main objective of commercial codes (as, e.g., NASTRAN) is to determine the
critical fluid flow velocity. The post-flutter behaviour can not be captured. The special problems of
aero-elasticity mainly in linear domain are solved.

The paper focus on numerical simulations of two dimensional viscous incompressible air flow
around an airfoil. The main objective is the correct numerical resolution of the flow and the fluid
forces acting on the airfoil. The relevant flow velocities for the selected class of problems are in the
range 0−120 m s−1. The flow is described by the incompressible Navier-Stokes equations. The other
possibility is to use the model of compressible flow. Nevertheless, the numerical approximation of
low Mach number flows at incompressible limit is quite complicated and a modification of governing
equations has to be used.

The numerical approximation of incompressible flow can be carried out with the use of various
methods. In CFD, the finite volume method is rather popular. In our paper the finite element
method is used for the spatial discretization of the problem. In this case several sources of in-
stabilities have to be treated. First, in order to guarantee the stability of the scheme the finite
elements for velocity and pressure need to be selected in a proper way to satisfy the Babuka-
Brezzi condition. Moreover, very high Reynolds numbers result in the appearance of spurious
oscillations in the approximate solution. In last decades a number of stabilization procedures have
been developed. In this paper the stabilization based on GLS (Galerkin Least-Squares) method
together with grad-div stabilization is employed. The combination of this method with the mesh
refinement (e.g., performed by the anisotropic mesh generator, see (Doleǰśı, 2001)) results in a
very robust and efficient method. The choice of stabilization parameters is based on the numerical
analysis of the problem as well as numerical experience, see (Lube, 1994), (Sváček and Feistauer,
2004). The presented method is applied to the solution of incompressible (laminar) Navier-Stokes
equations and also to the solution of Reynolds Averaged Navier-Stokes (RANS) equations. In this
paper the application of the finite element method to RANS system of equations is discussed. For
the description of application onto (laminar) Navier-Stokes equations, see (Sváček, Feistauer, and
Horáček, 2004). The Reynolds stresses involved in the RANS equations are modelled with the aid of
the Spallart-Almaras turbulence model (for an overview of turbulence models used in computational
fluid dynamics, see, e.g. (Wilcox, 1993).

The structure motion is simulated by the solution of a system of nonlinear ordinary differential
equations for the vertical and angular displacements. The airfoil motion results in deformations of
the computational domain, which are treated with the aid of Arbitrary Lagrangian-Eulerian(ALE)
method, see (Nomura and Hughes, 1992), (LeTallec and Mouro, 1998).
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Figure 1. Comparison of Lagrangian and Arbitrary Lagrangian-Eulerian mappings.
In this figure the demonstration of Lagrangian mapping (on the left) and ALE mapping (on the right) is shown.
Although the Lagrangian mapping allows the structure to be deflected, the other (artificial) boundaries are also
deformed , which is unusable in practical computations. ALE mapping is then the “compromise” between having
fixed artificial boundaries and deflected the structure boundary.

2. Problem description

In this section the addresed aeroelastic model is presented. The fluid flow is described with the aid
of the Reynolds Averaged Navier-Stokes(RANS) incompressible equations. The Reynolds stresses
are modelled with the aid of the one equation Spallart-Almaras model. The aerodynamical forces
are then evaluated and used in the structural model, which is presented here as the system of
two ordinary differential equations. In order to describe the mathematical model for the case of
moving meshes, the concept of Arbitrary Lagrangian-Eulerian formulation is briefly explained. The
discretization of incompressible Navier-Stokes equations (INSE) can be considered as a special case
of the RANS equations with turbulent viscosity νT set to νT ≡ 0.

2.1. Arbitrary Lagrangian-Eulerian formulation

The numerical approximation of the time derivative by a time difference leads to complications in
the case of time dependent domains and moving meshes. These complications are mainly caused by
the fact that the grid points change their location during every time step. With the use of Arbitrary
Lagrangian-Eulerian (ALE) method the original mathematical model can be reformulated in a
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suitable way and the finite element space discretization together with a suitable time discretization
can be introduced. The ALE method is based on the definition of an ALE mapping of the original
configuration computational domain G0 onto the computational domain Gt and the definition of the
ALE domain velocity as the time derivative of the ALE mapping At, i.e.

At : G0 7→ Gt, w̃g =
∂At

∂t
, wg = w̃g ◦ A

−1
t .

With the aid of the time differentiation with respect to the original configuration G0, leading to the

so-called ALE derivative denoted by DAt

Dt , the time derivative of any function can be rewritten as
∂
∂t = DAt

Dt − (wg · ∇). For more details about ALE method, see, e.g., (Nomura and Hughes, 1992).

2.2. Reynolds Averaged Navier-Stokes equations and turbulence modelling

Let us assume that at each time instant t the boundary Gt is split into three distjoint parts ∂Gt =
ΓD ∪ ΓO ∪ ΓWt

. The turbulent fluid flow is modelled with the numerical solution of Reynolds
Averaged Navier-Stokes equations

∂Ui

∂t
− ν

∑

j

∂

∂xj

(

∂Ui

∂xj
+
∂Uj

∂xi

)

+ (U · ∇)Ui +
∂P

∂xi
= −

∑

j

∂

∂xj
u′iu

′
j + f , (1)

∇ · U = 0,

where the right hand side terms are so called Reynolds stresses σij = −u′iu
′
j.

The system (1) is equipped with the following boundary conditions

a) U = UD, on ΓD,

b) U = wg, on ΓWt
, (2)

c) −ν
∑

j

(

∂Ui

∂xj
+
∂Uj

∂xi

)

nj + (P − Pref )ni =
∑

j

σijnj , on ΓO,

and with the initial condition U(x, 0) = U0(x) for x ∈ G0. If we set σij ≡ 0, then the boundary
condition (2,c) is reduced to the well-known “do-nothing” boundary condition. The Reynolds stress
tensor σ = (σij) requires further modelling. One possibility is to use the Bousinesq assumption
consisting of taking σ in the form

σij = −
2

3
kδij + νT

(

∂Ui

∂xj
+
∂Uj

∂xi

)

In the present paper the turbulent kinematic viscosity is modelled with the aid of one-equation
Spallart-Almaras model and the volumetric part −2

3kδij is included in the pressure term. In this
approach, the system of equations (1) is coupled with the following nonlinear partial differential
equation

DAt ν̃

Dt
+ ((U − wg) · ∇) ν̃ =

1

β

[

2
∑

i=1

∂

∂xi

(

(ν + ν̃)
∂ν̃

∂xi

)

+ cb2 (∇ν̃)2
]

+G− Y, (3)
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equipped with the boundary conditions ν̃ = 0 on ΓWt
and ∂ν̃

∂n
= 0 on ΓO ∪ ΓD. The functions G

and Y are functions of the tensor of rotation of mean velocity Ω and of the wall distance y, i.e.

G = cb1 S̃ · ν̃, Y = cw1

ν̃2

y2

(

1+c6w3

1+c6w3
/g6

)
1
6

, S̃ =
(

S + ν̃
κ2y2 fv2

)

, fv2
= 1 − χ

1+χfv1

,

g = r + cw2
(r6 − r), r = ν̃

S̃κ2y2
, S =

√

2Ω(U) : Ω(U), Ω(U) = 1
2(∇U −∇UT ).

The following choice of constants is used

cb1 = 0.1355, cb2 = 0.622, β =
2

3
, cv = 7.1,

cw3
= 0.3, cw3

= 2.0, κ = 0.41, cw1
= cb1/κ

2 + (1 + cb2)/β.

The Reynolds stresses then are computed as

σij = −νT

(

∂Ui

∂xj
+
∂Uj

∂xi

)

, νT = ν̃
χ3

χ3 + c3v
, χ =

ν̃

ν
,

where the volumetric part of σ has been included in the pressure term, i.e. P ∗ = P + 2
3k. In what

follows we shall not distinguish between P and P ∗, we shall simply use the symbol P .
The space discretization of the problem is carried out by the finite element method, which starts

from the so called weak formulation. To this end we introduce the velocity spaces W,X, the pressure
space Q and the turbulence model space Λ:

W = (H1(Gt))
2, X = {v ∈W ;v|ΓD∪ΓWt

= 0}, Q = L2(Gt), Λ = {φ ∈W ;φ|ΓWt
= 0}

where L2(Gt) is the Lebesgue space of square integrable functions over the domain Gt and H1(Gt)
is the Sobolev space of functions square integrable together with their first order derivatives.

Now, multiplying the system of equation (1) by test functions v ∈ X and q ∈ Q, integrating over
the domain Gt and using Green’s theorem, we obtain the weak formulation: find U : 〈0, T 〉 7→ W
such that for all t the Dirichlet boundary conditions (2 a-b) are satisfied and P : 〈0, T 〉 7→ Q such
that for all t ∈ 〈0, T 〉 the following equality holds

a(U − wg;U, P ;v, q) = L(v, q), ∀v ∈ X, q ∈ Q (4)

where

a(b;U, P ;v, q) =

(

DAtU

Dt
,v

)

Gt

+ ν

(

∇U,∇v

)

Gt

+
∑

i,j

(

σij(U),
∂vi

∂xj

)

Gt

+

(

(b · ∇)U,v

)

Gt

−

(

P,∇ · v

)

Gt

+

(

∇ ·U, q

)

Gt

,

L(v, q) = (f ,v)Gt
.

Now, by multiplying the equation (3) by a test function φ ∈ Λ, integrating over the domain Gt

and using the Green’s theorem, we obtain the weak formulation of the Spallart-Almaras turbulence
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one-equation model: Find ν̃ : [0, T ] 7→ Λ such that for all φ ∈ Λ and for any time t ∈ [0, T ] the
following equation holds
(

DAt ν̃

Dt
, φ

)

Gt

+

(

(U−wg) ·∇ν̃, φ

)

Gt

+

(

(ν+ ν̃)∇ν̃,∇ψ

)

Gt

+(Y, ψ)Gt
= (G,ψ)Gt

+

(

cb2
β

(∇ν̃)2, ψ

)

.

(5)

2.3. Structural model and fluid-structure coupling

The nonlinear equations of motion for a flexibly supported body, see (Sváček, Feistauer, and
Horáček, 2004), read

mḧ+ Sα α̈ cosα− Sα α̇
2 sinα+ khh h = −L(t), (6)

Sα ḧ cosα+ Iαα̈+ kαα α = M(t),

where the possibility of large values of α and h have been considered. For small values of the angle
α, when α ≈ 0, sinα ≈ 0 and cosα ≈ 1, the system (6) can be rewritten in a simplified form
(see, e.g., (Dowell, 1995), (Naudasher and Rockwell, 1994)). The aerodynamical forces acting on
the airfoil can be evaluated

L = −

∫

ΓWt

2
∑

j=1

τ2jnjdS, M = −

∫

ΓWt

2
∑

i,j=1

τijnjr
ort
i dS, (7)

(8)

where rort1 = −(x2 − xEO2), r
ort
2 = x1 − xEO1 and τ is the stress tensor, i.e.

τij = ρ

[

pδij + ν

(

∂Ui

∂xj
+
∂Uj

∂xi

)]

.

One should notice that the fluid flow model (1) and the structural model (6) can not be solved
independently: clearly the aerodynamical forces L(t) and M(t), determined by the solution of the
fluid flow model, appear in right hand side of (6) and, on the other hand, the deformation of the
computational domain Gt depends on the angle of rotation α = α(t) and the translation h = h(t),
which form the solution of the system (6).

3. Discretization of the problem

3.1. Space-time discretization

First, we start with time partition 0 = t0 < t1 < · · · < T, tk = k∆t, with a time step ∆t > 0 and
approximate the function U(tn), P (tn) and ν̃(tn) defined in Gtn at time tn by Un, Pn and ν̃n. The
ALE derivative can approximated by the finite differences

DAu

Dt

∣

∣

∣

∣

∣

tn+1

=
3un+1 − 4ûn + ûn−1

2∆t
,

DAν̃

Dt

∣

∣

∣

∣

∣

tn+1

=
3ν̃n+1 − 4ˆ̃ν

n
+ ˆ̃ν

n−1

2∆t
, (9)
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Figure 2. The fluid velocity and pressure isolines for inlet velocity U = 25m s−1

velocit[m/s]
20.5126
19.5358
18.559
17.5822
16.6054
15.6287
14.6519
13.6751
12.6983
11.7215
10.7447
9.76791
8.79112
7.81433
6.83754
5.86075
4.88396
3.90717
2.93038
1.95359
0.976796

pressure[Pa]
187.225
174.393
161.561
148.729
135.897
123.064
110.232
97.4002
84.5681
71.736
58.9039
46.0718
33.2397
20.4076
7.5755

-5.2566
-18.0887
-30.9208
-43.7529
-56.585
-69.4171

Figure 3. The time averaged fluid velocity and pressure isolines for inlet velocity U = 25m s−1, stationary solution.

where for a function f : Gi 7→ R the function f̂ i : Gn+1 7→ R is defined as f̂ i = f ◦ Ati ◦ A
−1
tn+1

at a
fixed time step tn+1. Then the form a is modified in the following way:

a(b;U, P ;v, q) =

(

3Un+1

2∆t
,v

)

Gn+1

+ ν

(

∇U,∇v

)

Gn+1

+
∑

i,j

(

σij(U),
∂vi

∂xj

)

Gn+1

+

(

(b · ∇)U,v

)

Gn+1

−

(

P,∇ · v

)

Gn+1

+

(

∇ · U, q

)

Gn+1

,

L(v, q) =

(

4Ûn − Ûn−1

2∆t
,v

)

Gn+1

,

and the semi-implicit weak form of the Spallart-Almaras turbulence reads: Find ν̃n+1 ∈ Λ such
that for all φ ∈ Λ holds the following equation

c(ν̃n+1, φ) = l(φ), (10)
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where

c(ν̃n+1, φ) =
(3ν̃n+1

2∆t
, φ
)

Gn+1

+
(

(Un+1−wg)·∇ν̃
n+1, φ

)

Gn+1

+
(ν + ν̃n

β
∇ν̃n+1,∇φ

)

Gn+1

+
(

s(n)ν̃n+1,∇φ
)

Gn+1

l(φ) =

(

4ˆ̃ν
n
− ˆ̃ν

n−1

2∆t
, φ

)

Gn+1

+

(

G(n), φ

)

Gn+1

+

(

cb2
β

(∇ˆ̃ν
n
)2, φ

)

Gn+1

,

and

s(n) = cw1

ν̃n

y2

(

1 + c6w3

1 + c6w3
/g6

)1/6

, G(n) = cb1S
ˆ̃ν

n
.

In order to apply the Galerkin FEM, we approximate the spaces W, X, Q from the weak for-
mulation by finite dimensional subspaces W∆ ⊂ W , Q∆ ⊂ Q , Λ∆ ⊂ Λ for ∆ ∈ (0,∆0) and we
set

X∆ = {v∆ ∈W∆;v∆|ΓD∩ΓWt
= 0}.

Hence, we define the discrete problem to find an approximate solution U∆ ∈ W∆ and P∆ ∈ Q∆

such that U∆ satisfies approximately boundary conditions and the identity

a(U − wg;U, P ;v, q) = L(v, q), ∀v, q (11)

The couple (X∆, Q∆) of the finite element spaces should satisfy the Babuška-Brezzi (BB) inf-sup
condition (see, e.g. (Girault and Raviart, 1986)). In our computations, the well-known Taylor-Hood
P2/P1 conforming elements on triangular meshes are used for the velocity/pressure approximation.

The standard Galerkin discretization (11) may produce approximate solutions suffering from
spurious oscillations for high Reynolds numbers. In order to avoid this drawback, the stabiliza-
tion via Galerkin Least-Squares technique is applied (see, e.g. (Lube, 1994), (Gelhard, Lube, and
Olshanskii, 2003)). The stabilization terms are defined as

L∆(b;U, p;v, q) =
∑

K∈T∆

2
∑

i=1

δK

(

3

2∆t
Ui − ν△Ui + (b · ∇)Ui +

∂P

∂xi
−

2
∑

j=1

∂σij(U)

∂xj
, (b · ∇)vi +

∂q

∂xi

)

K

,

F∆(v) =
∑

K∈T∆

2
∑

i=1

δK

(

4Ûi
n
− Ûi

n−1

2∆t
+ fi, (b · ∇)vi +

∂q

∂xi

)

K

, (12)

and the additional grad-div stabilization terms

P∆(U,v) =
∑

K∈T∆

τK(∇ ·U,∇ · v)K , (13)

are introduced with suitably chosen parameters δK ≥ 0 and τK ≥ 0.
The stabilized discrete problem reads: Find U∆ ∈ W∆ and P∆ × Q∆ such that U∆ satisfies

approximately conditions (2), a), b) and

a(U− wg;U, P ;v, q) + L∆(U −wg;U, P ;v, q) + P∆(U,v) = L(v, q) + F∆(V∆)

for all v∆ ∈ X∆, q∆) ∈ Q∆. (14)
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Furthermore, the approximate solution of the RANS system (1) is coupled with the Spallart-
Almaras turbulence model given by the solution of (10). The nonlinear algebraic discrete system
(14) and (10) is solved on each time level tn+1 with the aid of the linearized Oseen iterative
process. More detailed description of Oseen iterative process can be found in (Sváček, Feistauer,
and Horáček, 2004) for (laminar) Navier-Stokes equations.

4. Numerical results. Conclusions

In this paper we present the comparison of the presented method with NASTRAN computation and
with the numerical simulation with the aid of Spallart-Almaras turbulence model. The parameters
of the structural model was set as

m = 0.086622 kg, Sα = −0.000779673 kg m, Iα = 0.000487291 kg m2,

khh = 105.109 N m−1, kαα = 3.695582 N m rad−1, l = 0.05 m, c = 0.3 m.

The elastic axis is located at 40% of the airfoil, ρ = 1.225 kg m−3, ν = 1.5 · 10−5 m s−2. The
numerical computations were performed for airfoils NACA 0012 (turbulent case) and NACA 632 −
415 (laminar case).

First, the numerical approximation of the coupled model with RANS equations was obtained
for velocities in the range 5 − 40 m s−1. The aeroelastic responses of the airfoil are shown in
Figures 4, 5 and 6 for different values of the far field velocity U∞ in the stable region. In Figure
7 the aeroelastic response for far field velocity U∞ = 38m s−1 is shown, where the coupled model
is unstable (This is in agreement with NASTRAN computations by STRIP model, where the
determined critical velocity was shown for U∞ = 37.7m s−1. In Figure 8 the comparison of the
frequencies and damping coefficient determined from the aeroelastic response of the coupled model
and frequencies and damping coefficient from NASTRAN computations (see (Čečrdle and Maleček,
2002)) is shown.

The similar computations were performed for (laminar) Navier-Stokes equations and the flow
over an airfoil NACA 632 − 415. Figure 9 shows the behaviour of the coupled model in this case.
The post-flutter behaviour in this case is shown in Figure 10. In order to validate the results for
large large structural displacements the numerical simulation of vibrating airfoil was performed and
compared to the experimental results. Figure 11 shows the streamlines patterns, which is in good
agreement to the experimental results, see Naudasher and Rockwell, Figure 7.11.

The result shows that both laminar and turbulent approximation of fluid flow leads to compa-
rable results, the determined critical velocity by the presented method is in agreement with the
NASTRAN computation (Čečrdle and Maleček, 2002). The main difference is demonstrated in
Figures 2 and 3, where for the turbulence model leads to the stationary solution in the case of fixed
airfoil, which is not the case of ‘laminar’ simulations.
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Figure 4. RANS simulations with Spallart-Almaras turbulence model for U∞ = 5, 10, and 12.5 m s−1

The graph of the airfoil displacements in h (on the left) and α (on the right). In this case the coupled
model is in stable region and two main frequencies can be identified in the aeroelastic response of the airfoil.
Futhermore, with increasing far field velocity the aerodynamical damping is increasing.
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Figure 5. RANS simulations with Spallart-Almaras turbulence model for field velocity U∞ = 15, 20, 25 m s−1

The graph of the airfoil displacements in h (on the left) and α (on the right). The aeroelastic behaviour
is still in stable region, two main frequencies can be identified, for far field velocity U∞ = 25 m s−1 the
aerodynamical damping is maximal.
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Figure 6. RANS simulations with Spallart-Almaras turbulence model for U∞ = 30, 32, 35 m s−1

The graph of the airfoil displacements in h (on the left) and α (on the right). In this region of velocities only
one frequency can be identified in the aeroelastic response of the airfoil and with increasing far field velocity
the aerodynamical damping starts to be decreasing.
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Figure 7. RANS simulations with Spallart-Almaras turbulence model for post-critical velocity U∞ = 38 m s−1

For this value of far field velocity the aeroelastic problem is unstable, the vibrations slowly increases in time.
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Figure 8. Comparison of frequency and damping for the aeroelastic response for the presented FE simulations of
RANS equations and NASTRAN computations.

REC 2006 - Petr Sváček
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Figure 9. Navier-Stokes equations (laminar) simulations for the aeroelastic simulations and subcritical velocity
U∞ = 5, 10, and 16 m s−1

The graph of the airfoil displacements in h (on the left) and α (on the right). In this case the coupled
model is in stable region and two main frequencies can be identified in the aeroelastic response of the airfoil.
Futhermore, with increasing far field velocity the aerodynamical damping is increasing. For the far field
velocity U∞ = 16 m s−1 the vibrations are not fully damped as it was the case for the RANS simulations,
but the aeroelastic model still remains clearly stable.
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Figure 10. Navier-Stokes equations (laminar) simulations for the aeroelastic simulations and for sub-critical velocity
U∞ = 30 m s−1 and for post-critical velocity U∞ = 40 m s−1

α = 10.859 α = 19.4553
Figure 11. Incompressible (laminar) Navier-Stokes equations simulations.
Instantaneous streamline patterns for vibrating airfoilRe = 5000, α = 10◦+10◦ sin(2πfst) at fsc/U∞ = 1/2π
showing the ‘dynamic stall vortex’ (after (Naudasher and Rockwell, 1994))
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