Checking Computation of Numerical Functions
by the Use of Functional Equations

F. Vainstein and C. Jones

Georgia Institute of Technology
feodor.vainstein(@gtsav.gatech.edu

Abstract: Systematic use of functional equations for fault-tolerant computation of numerical
functions have been introduced by M. Blum (1989) and then independently by F. Vainstein
(1991). The later has introduced definition of polynomially checkable (PC) functions — the
functions for which functional equations are polynomials, and proved that the class of PC
functions is large and includes many commonly used functions. The functional equations that are
used to check computations of numerical functions are called checking polynomials. In this paper
we discuss an algorithm for computing coefficients of these polynomials. By using this algorithm
we obtain checking polynomials for the commonly used functions.

Keywords: fault tolerance, algebraic methods, numerical functions, error checking, checking
polynomials.

1. Introduction

Computers continue to take on more mission and safety critical operations in industrial, scientific,
and consumer markets. Modern processors compute a wide range of numerical functions.
Detecting and correcting errors due to numerical computations are critical aspects of processor
design.

There have been numerous approaches to fault tolerant computation of numerical functions.

These include hardware, information, time, and software redundancy methods (Lala 2001).
However, each of these methods comes at a significant price to the system in space or time. And
while the dimensions of chip technology are continually reduced the complexity of the systems
placed on chips continues to rise.
The technigue described here employs the algebraic concept of the transcendental degree of field
extensions to exploit the structure of a specific numerical computation. This method requires
significantly less hardware redundancy, offers good fault coverage, and has significant fault
location capability (Vainstein 1993).

© 2006 by authors. Printed in USA

REC 2006 - F. Vainstein and C. Jones

mailto:feodor.vainstein@gtsav.gatech.edu

2 F. Vainstein and C. Jones

Algorithms used in numerical computations can be sophisticated and numerous
implementations exist (Koren 2001; Muller 1997; Ercegovac, Lang et al 2000). Many
considerations go into choosing a certain numerical algorithm based on specific application and
design criteria. Contrary to the perception of many, the computation of numerical functions can
be quite complex and susceptible to faults.

In order to give the flavor of an algorithm for computing an elementary function, consider
Wong and Goto’s algorithm for computing logarithms (Wong and Goto 1994). This description
is based on the presentation of this algorithm given by Muller in (Muller 1997). See Muller’s text
for a complete description of the assumptions, details, and technical issues of the algorithm.

The notation
[Z]afb

is the number obtained by zeroing all the bits of z but the bits a to b. For example, if
m = my.m;m,mym,..., then
[m], ; = 0.mym,m,000...
To compute the logarithm of a normalized IEEE-754 double precision floating-point number

xX=mx 2exp onent
We have to follow the steps below:

1. Obtain factor K, and In(Kl)from tables.
2. Use a rectangular multiplier to multiply m by K. Then K, is chosen such that
K,K,m is close to 1. And [In(K,)]1_56 is obtained from tables.

3. Use a rectangular multiplier to multiply (mKl) by K, . As in the previous step
[In(K)], is obtained from tables.

4. Use a rectangular multiplier to multiply (mKlKZ) by K. Theresultis 1—y , where

0<y< 27%* This result is close enough to 1 that a degree-3 Taylor polynomial

approximation will give good accuracy.
5. Then, full multiplication and tables are used to compute
2

/4

2 1-56
and

1-56

REC 2006 — F. Vainstein and C. Jones

3 Determining Coefficients of Checking Polynomials for an Algebraic Method of Fault Tolerant Computations
of Numerical Functions

6. And, finally,
4 I
In(x) = exponent xIn(2)-INK, -InK, —InK, -y —[7} - %
1-56 1-56

As we see from this example, even “simple” numerical functions such as the logarithmic
function can be quite sophisticated and thus susceptible to faults.

The method presented in this paper seeks to address the fault-tolerant needs of numerical
algorithms with low processor overhead. To illustrate this method, let us consider an example.

Suppose we have to compute the function f(x) = e * sin5x, x € [0,10]

Let a,,a, € R,

Denote by f, = f(x+0) =e "sin5x,
fi=f(x+a,)=e " sin5(x +a,),
£, = f(x+a,) =e ") sin5(x +a,).

Denote by p, =e “ c0S5a,; g, =e “sinba,; p, =e “c0s5a,; q, =e “sinba,;
A=piq, - p,q:; B=—q,, C=¢q,

Then Af, +Bf, +Cf, =0

Forevery x € R.

It is very important that A, B and C do not depend on x and depend only on «, and a,
Taking (1) into consideration we can consider the following method for error detection.

Denote the computed values of function f at the points x,x+a;,x+a, by fo,fl,fz
respectively. Then if the computation is correct
Afo + Bfl + sz =0 (Independently of x!) 2

For error correction (single errorj_n thisgase) we can proceed as follows.
Consider a, = a; a, =2aandlet Af, + Bf, + Cf, #0 (3)
Because one of]71 = f,,i=012.
Suppose for example that]70 % fo }:l =i fz =f,
Then the correct value is given by the formula
fo =—§i—%fz (4)

Location of the error can be obtained by using (2) for the following triples:

4 F. Vainstein and C. Jones

x—2a xX—a X xX+a x+2a

It should be taken into consideration that computations are done in practice with a certain
level of accuracy. Hence the formula 2 should be substituted by the formula

| Afo +Bf+Cf; | <96,)
where ¢ is a small positive number specified by the precision of the computation.

2. Polynomial checking

For the readers convenience let us present the following definitions and results from the field
extension theory (Lang 1992).

Definition 1. Let K < L be a field extension and K[Tl,....,Tn] be the set of all polynomials in
1;,....T, over K. The elements a,,....a, € L are called algebraically dependent over X, if there
exists a polynomial P e K[T},...,T,],P#0, such that P(a,,.a,)=0. The elements
a,,...,a, € L are called algebraically independent over X, if they are not algebraically
dependent. By K(7;,...,7,) we denote the quotient field of the ring K[7,...,T,].

Example 2. Consider the field extension QO — R. Then the numbers V2 and V3 eR are

algebraically dependent over Q. P(T,,T,) =T +T; —5. The numbers 1, 7R are

algebraically independent over Q.

Definition 2. Let K — L be a field extension. Transcendental degree (Tr.deg.) of this extension
is by definition the maximum possible number of elements from L algebraically independent over
K.

If Trdeg. of K< L is equal to » and m>n, the any subset {al,... a }cL is

algebraically dependent.
Example 3. Tr.deg. of R < R(7) equals to 1.

Tr.deg. of R < R(x,e")equals to 2.

Tr.deg. of R(x,Sinx,e”) < R(x,Sin x,cosx,e”) equals to 0.
Definition 3. A field L is called algebraically closed if any polynomial P € L[T] has a root in L.

Example 4. R is not algebraically closed. P(T)=T? +1 does not have roots in R. C is
algebraically closed.

REC 2006 — F. Vainstein and C. Jones

5 Determining Coefficients of Checking Polynomials for an Algebraic Method of Fault Tolerant Computations
of Numerical Functions

Definition 4. A field K is called an algebraic closure of field K is

1. K is algebraically closed.

2. Tr.deg. of K K is equal to 0.

Theorem 1. For any field K its algebraic closure K exists and is unique up to isomorphism.
Definition 5. A function f:R — R is called polynomially checkable (PC) if there exists an

integer k, such that for any a,...a, € R the functions

foX)=f(x), fi(x)=f(x+a),.. f,(x)=f(x+a,) are algebraically dependent, i.e. there
exists a polynomial P e R/Ty,...,T,], such that P(f,,....f,)=0 (for any xeR). The
polynomial P is called a checking polynomial of the function f.

The computation of a PC function can be readily verified. For a given value of x, denote by
j?O , j?lfk the values of fat the points x,x +a,,...,x + a,, respectively. Then if all the values
are computedforLectly,jhe following equality holds:

P(for frrn /i) =0 (5)
This property provides a unified approach to the problem of error detection/correction in
computation of numerical functions. Indeed we can consider inequality similar to (2')

P(fy, fis) <6, (5)

where o is a small positive number specified by the precision of the computation. In case of
correct computation (5') is satisfied. We have to note, however, that even if (5') is satisfied it
doesn’t give us 100% warrantee that computation is correct. There are some faults that cannot be
detected by (5').

The first class of faults (we can call them software faults) are result of the fact that some
other PC function g(x) #f(x) can have the same checking polynomial. For instance if

g(x) =f(x+b), where b is a constant, then g(x) and f(x) have the same checking polynomials.

Preliminary results show that a PC function with bounded spectrum is uniquely defined by its
checking polynomial (the set of shifts is fixed) and its values at a finite set of points. This
property can be used to fight the software faults.

The second class of faults which can not be detected by using (5') are hardware faults. They

are result of physical defects of a device which performs the calculation of function. Random
faults are hardware faults. The fault coverage of random faults is calculated below for an
important case. It is shown in (Abamowitz and Stegun 1965) that the class of PC functions is
very broad even for a small £.

6 F. Vainstein and C. Jones

Denote by S the set of three functions: x,e*,sinx. Let 4 < S;denote by R(A) the field of all

rational functions in g; € A and by R(4) its algebraic closure.

£ (x)

Example 5. a) A = (x), R(A) = { } where P, Q; are polynomials of one variable with

real coefficients. Its algebraic closure R(A4) includes, as a special case any function g(x) which
is a solution of an equation P (x)g"(x)+P_(x)g" (x)+..+P,(x)=0 where

P (x),i=01,...,n are polynomials of one variable with real coefficients.

In particular, R(A) includes the set of all functions that can be obtained by application of

finite number of additions, subtractions, multiplications, divisions, and raising to a rational power
to the function g(x) = x.

P(e”,sinx)

b) A=1{e",sinx}; R(4)= O siny

, where P,,Q; are polynomials of two variables with

real coefficients.

Theorem 2 Let f:R — R belong to the field W,A C (x,e",sinx). Then fis polynomially
checkable with & =|A4].

Proof. We prove the theorem for the case 4 = {x,e",sin x}. For the other cases the proof is
analogous.

Let f{x)e R(x,e",sinx) and a,,a,,a, € R;denote: f,(x)=f(x), fi(x)=f(x+a,),
fo(x)=f(x+a), f;(x)= f(x+a;). We have to show that f,..., f;are algebraically
dependent. This follows from the statements:

1) Tr.degof R < R(x,e",sinx) equals to 3.

2) Forevery aeRf(x+a)e R(xex—SInx)

Indeed f{x) € R(x,e",Sinx) <> there exists a polynomial 4 € R(x,e",sinx)[T] such that
A(f)=A4,(x)f(x)+...+ 4, (x) f(x)+ 4y(x) =0, where A(x) € R(x,e",sin x) .Let us denote
px)=A4,(x)f(x)+...+ 4,(x) .Then
px+a)=Ax+a)f(x+a)+...+ Ay(x+a)=0,4(x+ a) € R(x,e" Sin x,COS x) .

Hence f(x+a)e R(x,e",sinx,C0S,). But R(x,e",Sinx,C0Sx)= R(x,e",Sinx),

REC 2006 — F. Vainstein and C. Jones

7 Determining Coefficients of Checking Polynomials for an Algebraic Method of Fault Tolerant Computations
of Numerical Functions

hence f{x+a)e R(x,e",sinx) and, therefore, f,.f,.f5.f5 € R(x,e",Sinx).

But the Tr.deg. of R < R(x,e",sinx) equals to 3, hence f; 1,.f,.f; are algebraically dependent.
Let / be the result of application of a finite number of additions, subtractions,
multiplications, divisions and raising to a rational power to the following functions:
Const, x,e",sin(r,x +bl.),cos(rjx+ bj), where 7,7, are rational numbers.
Then fis a PC function with £ < 3.
3
(sin(ﬁ +)+ e*)s 4+ x2 cos x

Example 6. The function f'(x) = is a PC function with £=3.

1
x° + (x* +x2(sin 2x + xe*)?)3

Example 7. Consider the function

1 1
((sinx)® + cos x)?

f(x)=

T ; f(x) € R(sin x)
sin(x + 7) — (cos3xsin(3x + 5) — 4)7

Tr.deg. of extension R < R(sin x)equals to 1, therefore f{x) is a PC function with £=1.
Note. The theorem 2 states that the class of PC functions is very big. We have to note, however,
that a number of commonly used functions like In(x), sin~(x),cos™*(x) are non PC functions.

3. Finding a Checking Polynomial by Least Square Estimation

To find a checking polynomial we consider the following optimization problem. Let
f:[4,B]->R
Denote

5(ﬂ0’al""'ak):Tz(f(x)_alf(x-i_al)_"'_akf(x-i_ak)_ﬂo)zdx

A
Find such a;,...,a,, B, that 8(f,,c,,...,,) takes minimal value. To solve this problem
consider the following equations:

8 F. Vainstein and C. Jones

0 . | o AV e
a/,05—£2(f(x) af,—..—a fy = B N-1)dx =0
a B

5 =[2(f(x)-anf, ~...—a, f, = By)frdx =0

oo, 4

0

oa,

& =[2f(x)-anf,~...—a, f, = By)fidx =0

A

Let us denote by <f,g>: (f-g)dx. Using this notation, we can express the system of

B C—

equations in the form
(f)=an(L fi)+...+a,(L £,)+ By(B—4)
<f0’f1> :a1<f1’f1>+-'-+0‘k<f1’fk>+ﬂo<flvl>
<f01f2> :a1<f2’.fl>+"‘+ak<f21fk>+ﬂ0<f2’l>

<f0’fk>:051<fk’f1>+---+ak<fk’fk>+ﬂo<fk’1>
Solving this system we obtain f,,c,...,a, . If 5(ﬂ0,a1,...,ak):0 then f is an LC function
with the checking polynomial

fo—afi—..—a f, =B, =0
If 5(ﬂ0,al,...,ak): 0 #0 then f does not have a checking polynomial of degree 1. However,
if 0 is a small number the formula

Soma fi—ma, [—P|S6
can be used to verify the correctness of computations. A similar method can be used for obtaining

a checking polynomial of degree > 1.
Other methods for finding a checking polynomial are described in (Vainstein 1998).

4., Numerical Results

REC 2006 — F. Vainstein and C. Jones

9 Determining Coefficients of Checking Polynomials for an Algebraic Method of Fault Tolerant Computations
of Numerical Functions

A Matlab program was developed to implement the algorithm described using techniques from
linear algebra. This program can determine the coefficients of the checking

polynomial, 3, ,,...,, , for various numerical functions.
From the system of equations defined above, denote

LAY . Lf) (B-4)
(o h) o (h) (AD
A= <f2vf1> <f2’fk> <f211>

<fk:f1> . <fk:fk> <f,;,1>

Define vector X as

And, define vector B as

(/o)
(for £5)
B= <fo'f2> :

(for fi)

First, the program computes the coefficients of matrix A and vector B using the trapezoidal
integration method. Then, the equation AX =B is solved by a reduced row echelon form
method. The resulting values of vector X then give us the coefficients of the checking

polynomial, §,, &, ..., c, .

The values of ,,a,...,a, are then used to evaluate 5(,Bo,al,...,ak) as described above.

This gives the value of & .

In order to investigate the effect of increasing &, the program finds the values of ¢ for a
given range of & values and determines which of these produces the minimum deviation. Shown
below are the results from these computations for various numerical functions.

F. Vainstein and C. Jones

In Table 1 and Figure 1 we see the algorithm’s results when applied to f(x) = In(x).

Function In(x)

Best k& 9

Accuracy, 0 1.063%10°°

o 13.636083507129
a, -48.3372588311351
a, 33.8356474758064
a, 104.402870905685
o -173.871357832086
o 19.6783752309016
a, 95.3406000928846
ay -40.7070503540183
ay -2.97970571433605
B, 0.0104815654867488
Stepsize, & 0.0001

Lower limit, 4 | 1

Upper limit, B | 100

Table 1. Best results for f(x) = |n(x).

log(accuracy)
) R £

.

51

I L L ! ! L L
1 2 3 4 5 & 7 g 9 10
k

Figure 1. Graph of the accuracy O versus k& forf(x)z In(x).

REC 2006 — F. Vainstein and C. Jones

11 Determining Coefficients of Checking Polynomials for an Algebraic Method of Fault Tolerant Computations
of Numerical Functions

These results show that, in the interval [1,100], and with a step size of 2 =0.0001, the
checking polynomial of f(x)= In(x)that returns the best accuracy, or minimum deviation o, is
the polynomial with values for 5,,,,...,a, asgivenin Table 1.

As a result of the computational experiments we observed that, as a rule, the deviation, ¢, is
decreasing with increasing &, for small values of k. However, as k continues to increase o
eventually begins to increase. The reason for this increase is the limited accuracy of computer
arithmetic. In general, we are interested in the smallest value of & (since the overhead increases
with k) that provides us with a satisfactory deviation.

As another example, let’s consider a more complicated looking numerical function

flx)= cos(sin(x)— \/;)— cos(x)+~/x (6)

The graph o versus £ for this function is shown below in Figure 3.

log(accuracy)

-15
o

7 ; g 5 0 2
k
Figure 3. Graph of the accuracy O versus k for f(x) = cos(sin(x)— \/;)— COS(x)+ NS
We note in the results of Figure 3 the two important features mentioned above: the deviation
initially decreases but then eventually increases with increasing .
Given in the table below are some other sample results.

Function k) QY Uyye B
cos(x) 2 | 15655594 %102 1.08060461 -
-0.999999999 | 4.6509012*10° %
x2 2 | 533053331072 2.00000000 2.0000000
-1.00000000
\/; 6 | 3.5165389*10°° 17.6933009 -0.73834646

12

F. Vainstein and C. Jones

-82.75929
138.617962
-51.0106681
-69.7915475

48.319250

X

e

5.4703917 %10 % | 0.00810684622

-5.80812%107*
0.132352941

mg{ﬁ(xm)i}

1.8593950%107*° 1.67126425
3.81365972

-5.13358327

2.2870721

cos{sin(x)— x - cos(x)+ +/x

7.6541494%107"° | -1.16902598
-0.58592973
-0.74339752
-1.48341738

-0.454274819

-0.230924645

0.684256990

7.6417875

Table 3. Sample results of the least square estimation method. All results for step size, # = 0.0001
These results in Table 3 give the values of f,,,,...,«, that define the checking polynomial

of the form

fo_

for each numerical function.

afy—.—a f, =P, =0

A number of other common and specialized numerical functions were also tested. The results
are shown in Table 4 below. Each of these functions were tested over a domain interval for which

they are well behaved.

Function

o

Airy Function: 4,(z)

%J.:ei[m]dt cfori=1

[3

3

8.01855604514853 10

k 2k+v
Bessel Function of 1% Kind: J,(z)= Zﬁ(g)

6.77944398369068 *10 2

1
Beta Function: B(a,a) = It”’l(l—t)“_ldt =
0

I(a)r(a)

F(a+a)

1.94247036365353%10°

REC 2006 — F. Vainstein and C. Jones

13 Determining Coefficients of Checking Polynomials for an Algebraic Method of Fault Tolerant Computations

of Numerical Functions

Scaled Complementary Error Function: f(x)=e e d

e 27
77

5.53736923276668 %10

o ¢

Exponential Integral: f(x): I et

dt

1.09725876920181*107*°

Logarithm of the Gamma Function:

logT'(z)= i(é - Iog(l—%ﬁ —yz—log(2)

k=1

2.24588944104907 %10~

Inverse Cosine: cos™(z)= % +i Iog(iz +4/1-2°)

9.57918288982022 %10 °

Inverse Hyperbolic Cosine: cosh™(z)= Iog(z +z-1Vz+ 1)

5.68478815529586 %10~

. , te”
Hyperbolic Cosine: cosh(z): ¢ re

1.63905802795885 * 10+

Inverse Tangent: tan*(z) = é |09[l i Zj

11—z

2.2975351543044%10°°

Complete Elliptic Integral of the First Kind:

i 1
Kle)= ! N1-£21-z¢ .

1.29605146674611 %10

Riemann Zeta Function: ¢ (s)== i kls
=

5.31429308150972 %10~

Dawson’s Integral: F(x)= e .[e dt
0

1.48383522053584 %10 °°

Fresnel Sine Integral: S(x) = Jsin(g : tzjdt

4.0441742571040510°°

Table 4. Results for various functions (Abamowitz and Stegun 1965; Wolfram 1999).

5. Conclusions and Future Work

14 F. Vainstein and C. Jones

We have demonstrated that checking polynomials can be effectively used for fault tolerant
computations. In particular, checking polynomials for some common numerical functions and
some specialized functions have been found.

A program was developed in Matlab that allow us to obtain an “approximate” checking
polynomial for a wide range of numerical functions.

The examples considered showed that even for functions that do not appear simple an
approximate checking polynomial provides a small value of deviation, ¢ .

A future paper will describe a hardware implementation of this fault tolerance technique.
Issues related to computational overhead and comparisons to overhead incurred by other methods
will be discussed.

We will also consider the problem of obtaining checking polynomials of degree greater than
one. Once this theoretical foundation is established an approach such as that outlined in this paper
will be developed for finding coefficients of higher degree checking polynomials.

References

Abramowitz, M. and I.A. Stegun, Handbook of Mathematical Functions, National Bureau of
Standards, Applied Math. Series #55, Dover Publications, 1965.

Ercegovac, Milos D., Tomas Lang, Jean-Michel Muller, and Arnaud Tisserand. “Reciprocation,
Square Root, Inverse Square Root, and Some Elementary Functions Using Small
Multipliers.” IEEE Transactions on Computers, 49(7):628-637, July 2000.

Koren, Israel. Computer Arithmetic Algorithms. A K Peters, 2001.

Lala, Parag K. Self~-Checking and Fault-Tolerant Digital Design. Morgan Kaufmann, 2001.

Lang, S., 4lgebra, Addison-Wesley Publishing Co., 1992.

Muller, Jean-Michel. Elementary Functions: Algorithms and Implementation. Birkhduser, 1997.

Vainstein, Feodor. “Algebraic Methods in Hardware/Software Testing.” Ph. D. Thesis, Boston
University, 1993.

Vainstein, F. S. “Self Checking Design Technique for Numerical Computations.” VLSI Design,
1998, Vol. 5, No. 4, pp. 385-392.

Wolfram, Stephen, The Mathematica Book, 4" Ed., Cambridge University Press, 1999.

Wong, W.F. and Goto, E. “Fast hardware-based algorithms for elementary function computations
using rectangular multipliers.” IEEE Transactions on Computers, 43(3):278-294, March
1994,

REC 2006 — F. Vainstein and C. Jones

	1. Introduction
	2. Polynomial checking
	3. Finding a Checking Polynomial by Least Square Estimation
	4. Numerical Results
	Function
	5. Conclusions and Future Work
	References

