How to Take into Account Dependence Between the Inputs: From Interval Computations to Constraint-Related Set Computations, with Potential Applications to Nuclear Safety, Bio- and Geosciences

M. Ceberio<sup>1</sup>, S. Ferson<sup>2</sup>, V. Kreinovich<sup>1</sup> S. Chopra<sup>1,3</sup>, G. Xiang<sup>1</sup>, A. Murguia<sup>1,4</sup>, J. Santillan<sup>1</sup>

<sup>1</sup>Computer Science, University of Texas, El Paso, TX 79968, USA, contact vladik@utep.edu <sup>2</sup>Applied Biomathematics, Setauket, NY 11733, USA <sup>3</sup>Lexmark International, Lexington, KY 40550, USA <sup>4</sup>XIMIS, El Paso, TX 79912, USA

| General Approach:                |
|----------------------------------|
| Interval Approach:               |
| Interval                         |
| Interval                         |
| Similar Situation:               |
| Let Us Use a Similar             |
| How to Represent Sets            |
| How to Propagate                 |
| How to Propagate                 |
| First Example:                   |
| Second Example:                  |
| How to Compute $\mathbf{r}_{ik}$ |
| Distributivity: $a \cdot (b +$   |
| Distributivity: New              |
| Toy Example with                 |
| Computation Time                 |
| What Next?                       |
| Probabilistic Case: In           |
| Acknowledgments                  |
| Title Page                       |
|                                  |
|                                  |
| < <b>&gt;</b>                    |
| Page 1 of 27                     |
| Go Back                          |
| Full Screen                      |

# 1. General Problem of Data Processing under Uncertainty

• Indirect measurements: way to measure y that are are difficult (or even impossible) to measure directly.

• Idea: 
$$y = f(x_1, \ldots, x_n)$$

• Problem: measurements are never 100% accurate:  $\tilde{x}_i \neq x_i \ (\Delta x_i \neq 0)$  hence

$$\widetilde{y} = f(\widetilde{x}_1, \dots, \widetilde{x}_n) \neq y = f(x_1, \dots, y_n).$$

What are bounds on  $\Delta y \stackrel{\text{def}}{=} \widetilde{y} - y$ ?

| Ge                                   | neral App                        | roach:          |
|--------------------------------------|----------------------------------|-----------------|
| Int                                  | erval Appl                       | roach:          |
| Int                                  | erval                            |                 |
| Int                                  | erval                            |                 |
| Sii                                  | nilar Situa                      | tion:           |
| Le                                   | t Us Use a                       | Similar         |
| На                                   | w to Repr                        | esent Sets      |
| На                                   | w to Prop                        | agate           |
| На                                   | w to Prop                        | agate           |
| Fii                                  | rst Exampl                       | 'e:             |
| Se                                   | cond Exan                        | nple:           |
| На                                   | How to Compute $\mathbf{r}_{ik}$ |                 |
| Distributivity: $a \cdot (b + \dots$ |                                  |                 |
| Distributivity: New                  |                                  |                 |
| Toy Example with                     |                                  |                 |
| Сс                                   | mputation                        | n Time          |
| W                                    | hat Next?                        |                 |
| Pr                                   | obabilistic                      | Case: In        |
| Ac                                   | knowledgr                        | nents           |
|                                      | Title                            | Page            |
|                                      |                                  |                 |
|                                      | ••                               | <b>&gt;&gt;</b> |
|                                      |                                  |                 |
|                                      | •                                |                 |
|                                      | Dec                              | 2 - 6 07        |
|                                      | Page 2                           | 2 of 27         |
|                                      | Go                               | Back            |
|                                      |                                  |                 |
|                                      |                                  |                 |

Full Screen

### 2. Probabilistic and Interval Uncertainty



- Traditional approach: we know probability distribution for  $\Delta x_i$  (usually Gaussian).
- Where it comes from: calibration using standard MI.
- *Problem:* sometimes we do not know the distribution because no "standard" (more accurate) MI is available. Cases:
  - fundamental science
  - manufacturing
- Solution: we know upper bounds  $\Delta_i$  on  $|\Delta x_i|$  hence

 $x_i \in [\widetilde{x}_i - \Delta_i, \widetilde{x}_i + \Delta_i].$ 

| General Approach:                |
|----------------------------------|
| Interval Approach:               |
| Interval                         |
| Interval                         |
| Similar Situation:               |
| Let Us Use a Similar             |
| How to Represent Sets            |
| How to Propagate                 |
| How to Propagate                 |
| First Example:                   |
| Second Example:                  |
| How to Compute $\mathbf{r}_{ik}$ |
| Distributivity: $a \cdot (b +$   |
| Distributivity: New              |
| Toy Example with                 |
| Computation Time                 |
| What Next?                       |
| Probabilistic Case: In           |
| Acknowledgments                  |
| Title Page                       |
|                                  |
| <b>44 &gt;&gt;</b>               |
|                                  |
|                                  |
| Page 3 of 27                     |
|                                  |
| Go Back                          |
|                                  |
| Full Screen                      |

#### 3. Interval Computations: A Problem



• Given:

- an algorithm  $y = f(x_1, \ldots, x_n)$  that transforms n real numbers  $x_i$  into a number y;
- *n* intervals  $\mathbf{x}_i = [\underline{x}_i, \overline{x}_i]$ .
- *Compute:* the corresponding range of *y*:

 $[\underline{y},\overline{y}] = \{f(x_1,\ldots,x_n) \mid x_1 \in [\underline{x}_1,\overline{x}_1],\ldots,x_n \in [\underline{x}_n,\overline{x}_n]\}.$ 

- Fact: even for quadratic f, the problem of computing the exact range **y** is NP-hard.
- Practical challenges:
  - find classes of problems for which efficient algorithms are possible; and
  - for problems outside these classes, find efficient techniques for *approximating* uncertainty of y.

| General Approach:                    |  |  |
|--------------------------------------|--|--|
| Interval Approach:                   |  |  |
| Interval                             |  |  |
| Interval                             |  |  |
| Similar Situation:                   |  |  |
| Let Us Use a Similar                 |  |  |
| How to Represent Sets                |  |  |
| How to Propagate                     |  |  |
| How to Propagate                     |  |  |
| First Example:                       |  |  |
| Second Example:                      |  |  |
| How to Compute $\mathbf{r}_{ik}$     |  |  |
| Distributivity: $a \cdot (b + \dots$ |  |  |
| Distributivity: New                  |  |  |
| Toy Example with                     |  |  |
| Computation Time                     |  |  |
| What Next?                           |  |  |
| Probabilistic Case: In               |  |  |
| Acknowledgments                      |  |  |
| Title Page                           |  |  |
|                                      |  |  |
|                                      |  |  |
| • •                                  |  |  |
|                                      |  |  |
| Page 4 of 27                         |  |  |
| Go Back                              |  |  |
| Full Screen                          |  |  |

### 4. Why Not Maximum Entropy?

- *Situation:* in many practical applications, it is very difficult to come up with the probabilities.
- Traditional engineering approach: use probabilistic techniques.
- *Problem:* many different probability distributions are consistent with the same observations.
- *Solution:* select one of these distributions e.g., the one with the largest entropy.
- Example single variable: if all we know is that  $x \in [\underline{x}, \overline{x}]$ , then MaxEnt leads to a uniform distribution on  $[\underline{x}, \overline{x}]$ .
- *Example multiple variables:* different variables are independently distributed.
- Conclusion: if  $\Delta y = \Delta x_1 + \ldots + \Delta x_n$ , with  $\Delta x_i \in [-\Delta_i, \Delta_i]$ , then due to Central Limit Theorem,  $\Delta y$  is almost normal, with  $\sigma = \frac{1}{\sqrt{3}} \cdot \sqrt{\sum_{i=1}^n \Delta_i^2}$ .
- Why this may be inadequate: when  $\Delta_i = \Delta$ , we get  $\Delta \sim \sqrt{n}$ , but due to correlation, it is possible that  $\Delta = n \cdot \Delta_i \sim n \gg \sqrt{n}$ .
- *Conclusion:* using a single distribution can be very misleading, especially if we want guaranteed results e.g., in high-risk application areas such as space exploration or nuclear engineering.

| Ge               | neral App          | roach:                 |  |
|------------------|--------------------|------------------------|--|
| Int              | Interval Approach: |                        |  |
| Int              | erval              |                        |  |
| Int              | erval              |                        |  |
| Sir              | nilar Situa        | tion:                  |  |
| Le               | t Us Use a         | Similar                |  |
| На               | w to Repr          | resent Sets            |  |
| На               | w to Prop          | oagate                 |  |
| На               | w to Prop          | oagate                 |  |
| Fir              | rst Exampl         | le:                    |  |
| Se               | cond Exan          | nple:                  |  |
| На               | w to Com           | pute $\mathbf{r}_{ik}$ |  |
| Di               | stributivity       | $a \cdot (b + \dots)$  |  |
| Di               | stributivity       | : New                  |  |
| Toy Example with |                    |                        |  |
| Computation Time |                    |                        |  |
| W                | hat Next?          |                        |  |
| Pr               | obabilistic        | Case: In               |  |
| Ac               | knowledgr          | ments                  |  |
|                  | Title              | Page                   |  |
|                  |                    |                        |  |
|                  | ••                 | <b>&gt;&gt;</b>        |  |
|                  |                    |                        |  |
|                  | •                  |                        |  |
| Page 5 of 27     |                    |                        |  |
|                  | Page 5 of 27       |                        |  |
|                  | Go                 | Back                   |  |
|                  |                    |                        |  |
| Full Screen      |                    |                        |  |

# 5. General Approach: Interval-Type Step-by-Step Techniques

- *Problem:* it is difficult to compute the range **y**.
- Solution: compute an enclosure  $\mathbf{Y}$  such that  $\mathbf{y} \subseteq \mathbf{Y}$ .
- Interval arithmetic: for arithmetic operations  $f(x_1, x_2)$ , we have explicit formulas for the range.
- *Examples:* when  $x_1 \in \mathbf{x}_1 = [\underline{x}_1, \overline{x}_1]$  and  $x_2 \in \mathbf{x}_2 = [\underline{x}_2, \overline{x}_2]$ , then:
  - The range  $\mathbf{x}_1 + \mathbf{x}_2$  for  $x_1 + x_2$  is  $[\underline{x}_1 + \underline{x}_2, \overline{x}_1 + \overline{x}_2]$ .
  - The range  $\mathbf{x}_1 \mathbf{x}_2$  for  $x_1 x_2$  is  $[\underline{x}_1 \overline{x}_2, \overline{x}_1 \underline{x}_2]$ .
  - The range  $\mathbf{x}_1 \cdot \mathbf{x}_2$  for  $x_1 \cdot x_2$  is  $[y, \overline{y}]$ , where

$$\underline{y} = \min(\underline{x}_1 \cdot \underline{x}_2, \underline{x}_1 \cdot \overline{x}_2, \overline{x}_1 \cdot \underline{x}_2, \overline{x}_1 \cdot \overline{x}_2);$$
  
$$\overline{y} = \max(\underline{x}_1 \cdot \underline{x}_2, \underline{x}_1 \cdot \overline{x}_2, \overline{x}_1 \cdot \underline{x}_2, \overline{x}_1 \cdot \overline{x}_2).$$

• The range  $1/\mathbf{x}_1$  for  $1/x_1$  is  $[1/\overline{x}_1, 1/\underline{x}_1]$  (if  $0 \notin \mathbf{x}_1$ ).

| Ge  | neral App    | roach:                 |
|-----|--------------|------------------------|
| Int | erval App    | roach:                 |
| Int | erval        |                        |
| Int | erval        |                        |
| Sin | nilar Situa  | tion:                  |
| Lei | t Us Use a   | Similar                |
| Но  | w to Repr    | resent Sets            |
| Но  | w to Prop    | oagate                 |
| Но  | w to Prop    | oagate                 |
| Fir | st Exampl    | le:                    |
| Se  | cond Exan    | nple:                  |
| Но  | w to Com     | pute $\mathbf{r}_{ik}$ |
| Dis | stributivity | $a \cdot (b + \dots)$  |
| Dis | stributivity | : New                  |
| Τo  | y Example    | ewith                  |
| Со  | mputatior    | n Time                 |
| W   | hat Next?    |                        |
| Pro | obabilistic  | Case: In               |
| Ac  | knowledgr    | nents                  |
|     | Title        | Page                   |
|     |              |                        |
|     | ••           | <b>&gt;&gt;</b>        |
|     |              |                        |
|     | •            |                        |
|     | Page         | 6 of 27                |
|     | , age        | 0121                   |
|     | Go           | Back                   |
|     |              |                        |
|     | Full S       | Screen                 |

#### 6. Interval Approach: Example

- Example:  $f(x) = (x-2) \cdot (x+2), x \in [1,2].$
- How will the computer compute it?
  - $r_1 := x 2;$
  - $r_2 := x + 2;$
  - $r_3 := r_1 \cdot r_2$ .
- Main idea: do the same operations, but with intervals instead of numbers:
  - $\mathbf{r}_1 := [1,2] [2,2] = [-1,0];$
  - $\mathbf{r}_2 := [1, 2] + [2, 2] = [3, 4];$
  - $\mathbf{r}_3 := [-1, 0] \cdot [3, 4] = [-4, 0].$
- Actual range:  $f(\mathbf{x}) = [-3, 0]$ .
- Comment: this is just a toy example, there are more efficient ways of computing an enclosure  $\mathbf{Y} \supseteq \mathbf{y}$ .

| General Approach:                    |
|--------------------------------------|
| Interval Approach:                   |
| Interval                             |
| Interval                             |
| Similar Situation:                   |
| Let Us Use a Similar                 |
| How to Represent Sets                |
| How to Propagate                     |
| How to Propagate                     |
| First Example:                       |
| Second Example:                      |
| How to Compute $\mathbf{r}_{ik}$     |
| Distributivity: $a \cdot (b + \dots$ |
| Distributivity: New                  |
| Toy Example with                     |
| Computation Time                     |
| What Next?                           |
| Probabilistic Case: In               |
| Acknowledgments                      |
| Title Page                           |
|                                      |
| <b>44 &gt;&gt;</b>                   |
|                                      |
|                                      |
| Page 7 of 27                         |
|                                      |
| Go Back                              |
| Eull Sever                           |

## 7. Interval Computations: Analysis

- Computation time:  $\leq 4$  arithmetic operations per original operation, so O(T), where T is the running time of the original algorithm.
- Result: often, enclosure  $\mathbf{Y} \supseteq \mathbf{y}$  with excess width.
- *Reason:* there is a relation between intermediate results, and we ignore it in straightforward interval computations.
- Alternative: we can compute the exact range: e.g., Tarksi algorithm for algebraic f.
- Computation time: can be exponential  $O(2^T)$ .
- *Summarizing:* we have two algorithms:
  - a fast and efficient O(T) algorithm which often has large excess width;
  - $-\,$  a slow and inefficient (often non-feasible) algorithm with no excess width.
- It is desirable: to develop a sequence of feasible algorithms with:
  - longer and longer computation time and
  - $-\,$  smaller and smaller excess width.

| General Approach:                    |  |
|--------------------------------------|--|
| Interval Approach:                   |  |
| Interval                             |  |
| Interval                             |  |
| Similar Situation:                   |  |
| Let Us Use a Similar                 |  |
| How to Represent Sets                |  |
| How to Propagate                     |  |
| How to Propagate                     |  |
| First Example:                       |  |
| Second Example:                      |  |
| How to Compute $\mathbf{r}_{ik}$     |  |
| Distributivity: $a \cdot (b + \dots$ |  |
| Distributivity: New                  |  |
| Toy Example with                     |  |
| Computation Time                     |  |
| What Next?                           |  |
| Probabilistic Case: In               |  |
| Acknowledgments                      |  |
| Title Page                           |  |
|                                      |  |
| <b>44 &gt;&gt;</b>                   |  |
|                                      |  |
|                                      |  |
| Page 8 of 27                         |  |
| Go Back                              |  |
| Full Screen                          |  |

## 8. Interval Computations: Limitations

- Traditional interval computations:
  - we know the intervals  $\mathbf{x}_i$  of possible values of different parameters  $x_i$ , and
  - we assume that an arbitrary combination of these values is possible.
- In geometric terms: the set of possible combinations  $x = (x_1, \ldots, x_n)$  is a box  $\mathbf{x} = \mathbf{x}_1 \times \ldots \times \mathbf{x}_n$ .



- In practice: we also know additional restrictions on the possible combinations of  $x_i$ .
- *Example:* in geosciences, in addition to intervals for velocities  $v_i$  at different points, we know that  $|v_i v_j| \leq \Delta$  for neighboring points:



• *Example:* in nuclear engineering, experts often state that combinations of extreme values are impossible, we have an ellipsoid, not a box.

| General Appr     | roach:                 |
|------------------|------------------------|
| Interval Appr    | roach:                 |
| Interval         |                        |
| Interval         |                        |
| Similar Situa    | tion:                  |
| Let Us Use a     | Similar                |
| How to Repr      | esent Sets             |
| How to Prop      | agate                  |
| How to Prop      | agate                  |
| First Example    | e:                     |
| Second Exam      | nple:                  |
| How to Com       | pute $\mathbf{r}_{ik}$ |
| Distributivity   | $a \cdot (b + \dots$   |
| Distributivity   | : New                  |
| Toy Example with |                        |
| Computation Time |                        |
| What Next?       |                        |
| Probabilistic    | Case: In               |
| Acknowledgn      | nents                  |
| Title            | Page                   |
|                  |                        |
| ••               |                        |
|                  |                        |
|                  |                        |
| Page 9           | ) of 27                |
| Go I             | Back                   |
|                  |                        |
| Full S           | Screen                 |

## 9. Similar Situation: Statistics

- Ideally, we should take into account dependence between all the variables.
- In the first approximation, it is often reasonable to consider them independent.
- In the next approximation, we consider pairwise dependencies.
- To get an even better picture, we can consider dependencies between triples, etc.
- As a result, we get a sequence of methods which:
  - require more and more time
  - but at the same time lead to more and more accurate results.

| General Approach:                |
|----------------------------------|
| Interval Approach:               |
| Interval                         |
| Interval                         |
| Similar Situation:               |
| Let Us Use a Similar             |
| How to Represent Sets            |
| How to Propagate                 |
| How to Propagate                 |
| First Example:                   |
| Second Example:                  |
| How to Compute $\mathbf{r}_{ik}$ |
| Distributivity: $a \cdot (b +$   |
| Distributivity: New              |
| Toy Example with                 |
| Computation Time                 |
| What Next?                       |
| Probabilistic Case: In           |
| Acknowledgments                  |
| Title Page                       |
|                                  |
| <b>44 &gt;&gt;</b>               |
|                                  |
|                                  |
| Page 10 of 27                    |
| 1 age 10 01 21                   |
| Go Back                          |
| Full Screen                      |

### 10. Let Us Use a Similar Idea for Interval Uncertainty

- Ideally, we should take the box  $\mathbf{x}_1 \times \ldots \times \mathbf{x}_n$  (or appropriate subset of the box), divide it into smaller boxes, estimate the range over each small box, and combine the results.
- This requires  $C^n$  subboxes i.e., exponential time.
- In straightforward interval computations, we consider only intervals of possible values of  $x_i$ .
- A natural next approximation is when we consider:
  - sets  $\mathbf{x}_i$  of possible values of  $x_i$ , and also
  - sets  $\mathbf{x}_{ij}$  of possible pairs  $(x_i, x_j)$ .
- Third approximation: we also consider possible sets of triples, etc.
- As a result, we hope to get a sequence of methods which:
  - require more and more time
  - but at the same time lead to more and more accurate results.

| Ge  | neral App    | roach:                 |
|-----|--------------|------------------------|
| Int | erval App    | roach:                 |
| Int | erval        |                        |
| Int | erval        |                        |
| Sir | nilar Situa  | ntion:                 |
| Le  | t Us Use a   | a Similar              |
| На  | ow to Repr   | resent Sets            |
| На  | ow to Prop   | pagate                 |
| На  | ow to Prop   | pagate                 |
| Fii | rst Exampl   | le:                    |
| Se  | cond Exan    | nple:                  |
| На  | w to Com     | pute $\mathbf{r}_{ik}$ |
| Di  | stributivity | $a \cdot (b + \dots)$  |
| Di  | stributivity | /: New                 |
| То  | y Example    | e with                 |
| Сс  | omputation   | n Time                 |
| W   | hat Next?    |                        |
| Pr  | obabilistic  | Case: In               |
| Ac  | knowledgr    | ments                  |
|     | Title        | Page                   |
|     |              |                        |
|     | ••           | <b>&gt;&gt;</b>        |
|     |              |                        |
|     | •            |                        |
|     | Page 1       | 1 of 27                |
|     | - age 1      | 1 01 21                |
|     | Go           | Back                   |
|     |              |                        |
|     | Full S       | Screen                 |

## 11. How to Represent Sets

- *First idea:* do it in a way cumulative probability distributions (cdf) are represented in RiskCalc package: by discretization.
- In RiskCalc, we:
  - divide the interval [0,1] of possible values of probability into, say, 10 subintervals of equal width and
  - represent cdf F(x) by 10 values  $x_1, \ldots, x_{10}$  at which  $F(x_i) = i/10$ .
- Similarly, we:
  - divide the box  $\mathbf{x}_i \times \mathbf{x}_j$  into, say,  $10 \times 10$  subboxes and
  - describe the set  $\mathbf{x}_{ij}$  by listing all subboxes which contain possible pairs.
- Comment:
  - A more efficient idea is to represent this set by a covering paving in the style of Jaulin et al. – i.e., consider boxes of different sizes starting with larger ones and only decrease the size when necessary.
  - It is also possible (and often efficient) to use ellipsoids.
  - Idea is similar to rough sets.

| General Approach:                    |
|--------------------------------------|
| Interval Approach:                   |
| Interval                             |
| Interval                             |
| Similar Situation:                   |
| Let Us Use a Similar                 |
| How to Represent Sets                |
| How to Propagate                     |
| How to Propagate                     |
| First Example:                       |
| Second Example:                      |
| How to Compute $\mathbf{r}_{ik}$     |
| Distributivity: $a \cdot (b + \dots$ |
| Distributivity: New                  |
| Toy Example with                     |
| Computation Time                     |
| What Next?                           |
| Probabilistic Case: In               |
| Acknowledgments                      |
| Title Page                           |
|                                      |
| •• ••                                |
| • •                                  |
|                                      |
| Page 12 of 27                        |
| Go Back                              |
| Full Screen                          |

# 12. How to Propagate This Uncertainty: A Problem and General Idea

Problem:

- In the beginning: we know the intervals  $\mathbf{r}_1, \ldots, \mathbf{r}_n$  corresponding to the input variables  $r_i = x_i$ , and we know the sets  $\mathbf{r}_{ij}$  for i, j from 1 to n.
- Question: propagate this information through an intermediate computation step, a step of computing  $r_k = r_a * r_b$  for some arithmetic operation \* and for previous results  $r_a$  and  $r_b$  (a, b < k).
- By the time we come to this step, we know the intervals  $\mathbf{r}_i$  and the sets  $\mathbf{r}_{ij}$  for i, j < k.
- We want to find the interval  $\mathbf{r}_k$  for  $x_k$ , and the sets  $\mathbf{r}_{ik}$  for i < k.

General idea:

- The range  $\mathbf{r}_k$  can be naturally found as  $\{r_a * r_b | (r_a, r_b) \in \mathbf{r}_{ab}\}$ .
- The set  $\mathbf{r}_{ak}$  is described as  $\{(r_a, r_a * r_b) | (r_a, r_b) \in \mathbf{r}_{ab}\}.$
- The set  $\mathbf{r}_{bk}$  is described as  $\{(r_b, r_a * r_b) | (r_a, r_b) \in \mathbf{r}_{ab}\}$ .
- For  $i \neq a, b$ , the set  $\mathbf{r}_{ik}$  is described as

$$\{(r_i, r_a * r_b) \mid (r_i, r_a) \in \mathbf{r}_{ia}, (r_i, r_b) \in \mathbf{r}_{ib}\}.$$

• Comment. This is related to join

 $\mathbf{r}_{ai} \bowtie_i \mathbf{r}_{ib} = \{ (r_a, r_i, r_b) \mid (r_a, r_i) \in \mathbf{r}_{ai}, (r_i, r_b) \in \mathbf{r}_{ib} \}.$ 

| General Approach:                    |  |  |  |  |
|--------------------------------------|--|--|--|--|
| Interval Approach:                   |  |  |  |  |
| Interval                             |  |  |  |  |
| Interval                             |  |  |  |  |
| Similar Situation:                   |  |  |  |  |
| Let Us Use a Similar                 |  |  |  |  |
| How to Represent Sets                |  |  |  |  |
| How to Propagate                     |  |  |  |  |
| How to Propagate                     |  |  |  |  |
| First Example:                       |  |  |  |  |
| Second Example:                      |  |  |  |  |
| How to Compute $\mathbf{r}_{ik}$     |  |  |  |  |
| Distributivity: $a \cdot (b + \dots$ |  |  |  |  |
| Distributivity: New                  |  |  |  |  |
| Toy Example with                     |  |  |  |  |
| Computation Time                     |  |  |  |  |
| What Next?                           |  |  |  |  |
| Probabilistic Case: In               |  |  |  |  |
| Acknowledgments                      |  |  |  |  |
| Title Page                           |  |  |  |  |
|                                      |  |  |  |  |
| •• ••                                |  |  |  |  |
|                                      |  |  |  |  |
|                                      |  |  |  |  |
| Page 13 of 27                        |  |  |  |  |
| 1 age 15 01 21                       |  |  |  |  |
| Go Back                              |  |  |  |  |
|                                      |  |  |  |  |
| Full Scroop                          |  |  |  |  |

## **13.** First Example: Computing the Range of x - x

- Problem:
  - for f(x) = x x on [0, 1], the actual range is [0, 0];
  - straightforward interval computations lead to an enclosure [0, 1] [0, 1] = [-1, 1].
- In straightforward interval computations:
  - we have  $r_1 = x$  with interval  $\mathbf{r}_1 = [0, 1];$
  - we have  $r_2 = x$  with interval  $\mathbf{x}_2 = [0, 1];$
  - the variables  $r_1$  and  $r_2$  are dependent, but we ignore this dependence.
- In the new approach: we have  $\mathbf{r}_1 = \mathbf{r}_2 = [0, 1]$ , and we also have  $\mathbf{r}_{12}$ :



• The resulting set is the exact range  $\{0\} = [0, 0]$ .

| General Approach:                |
|----------------------------------|
| Interval Approach:               |
| Interval                         |
| Interval                         |
| Similar Situation:               |
| Let Us Use a Similar             |
| How to Represent Sets            |
| How to Propagate                 |
| How to Propagate                 |
| First Example:                   |
| Second Example:                  |
| How to Compute $\mathbf{r}_{ik}$ |
| Distributivity: $a \cdot (b +$   |
| Distributivity: New              |
| Toy Example with                 |
| Computation Time                 |
| What Next?                       |
| Probabilistic Case: In           |
| Acknowledgments                  |
| Title Page                       |
|                                  |
| 44 >>                            |
|                                  |
| Page 14 of 27                    |
| Go Back                          |
| Full Screen                      |

# 14. How to Propagate This Uncertainty: Numerical Implementation

- First step: computing  $\mathbf{r}_k$ :
  - In our representation, the set  $\mathbf{x}_{ab}$  consists of small 2-D boxes  $\mathbf{X}_a \times \mathbf{X}_b$ .
  - For each small box  $\mathbf{X}_a \times \mathbf{X}_b$ , we use interval arithmetic to compute the range  $\mathbf{X}_a * \mathbf{X}_b$  of the value  $r_a * r_b$  over this box.
  - Then, we take the union (interval hull) of all these ranges.
- Second step: computing  $\mathbf{r}_{ik}$ :
  - We consider the sets  $\mathbf{r}_{ab}$ ,  $\mathbf{r}_{ai}$ , and  $\mathbf{r}_{bi}$ .
  - For each small box  $\mathbf{R}_a \times \mathbf{R}_b$  from  $\mathbf{r}_{ab}$ , we:
    - \* consider all subintervals  $\mathbf{R}_i$  for which  $\mathbf{R}_a \times \mathbf{R}_i$  is in  $\mathbf{r}_{ai}$  and  $\mathbf{R}_b \times \mathbf{R}_i$  is in  $\mathbf{r}_{bi}$ , and then
    - \* we add  $(\mathbf{R}_a * \mathbf{R}_b) \times \mathbf{R}_i$  to the set  $\mathbf{r}_{ki}$ .
  - To be more precise:
    - \* since the interval  $\mathbf{R}_a * \mathbf{R}_b$  may not have bounds of the type p/10,
    - $\ast\,$  we may need to expand it to get within bounds of the desired type.
- We repeat these computations step by step until we get the desired estimate for the range of the final result of the computations.

| General Approach:                    |
|--------------------------------------|
| Interval Approach:                   |
| Interval                             |
| Interval                             |
| Similar Situation:                   |
| Let Us Use a Similar                 |
| How to Represent Sets                |
| How to Propagate                     |
| How to Propagate                     |
| First Example:                       |
| Second Example:                      |
| How to Compute $\mathbf{r}_{ik}$     |
| Distributivity: $a \cdot (b + \dots$ |
| Distributivity: New                  |
| Toy Example with                     |
| Computation Time                     |
| What Next?                           |
| Probabilistic Case: In               |
| Acknowledgments                      |
| Title Page                           |
|                                      |
| <b>44 &gt;&gt;</b>                   |
|                                      |
|                                      |
| Page 15 of 27                        |
| 1 age 13 01 21                       |
| Go Back                              |
|                                      |
| Full Screen                          |

# **15.** First Example: Computing the Range of x - x (cont-d)

- Problem:
  - for f(x) = x x on [0, 1], the actual range is [0, 0];
  - straightforward interval computations lead to an enclosure [0, 1] [0, 1] = [-1, 1].
- In straightforward interval computations:
  - we have  $r_1 = x$  with interval  $\mathbf{r}_1 = [0, 1];$
  - we have  $r_2 = x$  with interval  $\mathbf{x}_2 = [0, 1];$
  - the variables  $r_1$  and  $r_2$  are dependent, but we ignore this dependence.
- In the new approach: we have  $\mathbf{r}_1 = \mathbf{r}_2 = [0, 1]$ , and we also have  $\mathbf{r}_{12}$ :

|   |   |   |   | × |
|---|---|---|---|---|
|   |   |   | × |   |
|   |   | × |   |   |
|   | X |   |   |   |
| × |   |   |   |   |

- For each small box, we have [-0.2, 0.2], so the union is [-0.2, 0.2].
- If we divide into more pieces, we get close to 0.

| General Approach:                     |
|---------------------------------------|
| Interval Approach:                    |
| Interval                              |
| Interval                              |
| Similar Situation:                    |
| Let Us Use a Similar                  |
| How to Represent Sets                 |
| How to Propagate                      |
| How to Propagate                      |
| First Example:                        |
| Second Example:                       |
| How to Compute $\mathbf{r}_{ik}$      |
| Distributivity: $a \cdot (b + \dots)$ |
| Distributivity: New                   |
| Toy Example with                      |
| Computation Time                      |
| What Next?                            |
| Probabilistic Case: In                |
| Acknowledgments                       |
| Title Page                            |
|                                       |
| <b>44 &gt;&gt;</b>                    |
|                                       |
|                                       |
| Page 16 of 27                         |
|                                       |
| Go Back                               |
| Eull Server                           |

### **16.** Second Example: Computing the Range of $x - x^2$

- In straightforward interval computations:
  - we have  $r_1 = x$  with interval  $\mathbf{r}_1 = [0, 1];$
  - we have  $r_2 = x^2$  with interval  $\mathbf{x}_2 = [0, 1];$
  - the variables  $r_1$  and  $r_2$  are dependent, but we ignore this dependence and estimate  $\mathbf{r}_3$  as [0,1] - [0,1] = [-1,1].
- In the new approach: we have  $\mathbf{r}_1 = \mathbf{r}_2 = [0, 1]$ , and we also have  $\mathbf{r}_{12}$ :
  - the union of  $\mathbf{R}_1^2$  is [0, 1], so we have [0, 0.2], [0.2, 0.4], etc.;
  - for  $\mathbf{R}_1 = [0, 0.2]$ , we have  $\mathbf{R}_1^2 = [0, 0.04]$ , so only [0, 0.2] is affected;
  - for  $\mathbf{R}_1 = [0.2, 0.4]$ , we have  $\mathbf{R}_1^2 = [0.04, 0.16]$ , so only [0, 0.2] is affected;
  - for  $\mathbf{R}_1 = [0.4, 0.6]$ , we have  $\mathbf{R}_1^2 = [0.16, 0.25]$ , so [0, 0.2] and [0.2, 0.4] are affected, etc.

|   |   |   |   | Х |
|---|---|---|---|---|
|   |   |   | × | × |
|   |   |   | X |   |
|   |   | Х | × |   |
| X | Х | Х |   |   |

- For each possible pair of small boxes  $\mathbf{R}_1 \times \mathbf{R}_2$ , we have  $\mathbf{R}_1 \mathbf{R}_2 = [-0.2, 0.2]$ , [0, 0.4] and [0.2, 0.6], so the union of  $\mathbf{R}_1 \mathbf{R}_2$  is  $\mathbf{r}_3 = [-0.2, 0.6]$ .
- If we divide into more pieces, we get closer to [0, 0.25].

| General Approach:                    |
|--------------------------------------|
| Interval Approach:                   |
| Interval                             |
| Interval                             |
| Similar Situation:                   |
| Let Us Use a Similar                 |
| How to Represent Sets                |
| How to Propagate                     |
| How to Propagate                     |
| First Example:                       |
| Second Example:                      |
| How to Compute $\mathbf{r}_{ik}$     |
| Distributivity: $a \cdot (b + \dots$ |
| Distributivity: New                  |
| Toy Example with                     |
| Computation Time                     |
| What Next?                           |
| Probabilistic Case: In               |
| Acknowledgments                      |
| Title Page                           |
|                                      |
| <b>44 &gt;&gt;</b>                   |
|                                      |
|                                      |
| Page 17 of 27                        |
|                                      |
| Go Back                              |
| Full Scroop                          |

## **17.** How to Compute $\mathbf{r}_{ik}$

- Since  $\mathbf{r}_3 = [-0.2, 0.6]$ , we divide this range into 5 subintervals [-0.2, -0.04], [-0.04, 0.12], [0.12, 0.28], [0.28, 0.44], [0.44, 0.6].
- For  $\mathbf{R}_1 = [0, 0.2]$ , the only possible  $\mathbf{R}_2$  is [0, 0.2], so  $\mathbf{R}_1 \mathbf{R}_2 = [-0.2, 0.2]$ . This covers [-0.2, -0.04] and [-0.04, 0.12].
- For  $\mathbf{R}_1 = [0.2, 0.4]$ , the only possible  $\mathbf{R}_2$  is [0, 0.2], so  $\mathbf{R}_1 \mathbf{R}_2 = [0, 0.4]$ . This covers [-0.04, 0.12], [0.12, 0.28], and [0.28, 0.44].
- For  $\mathbf{R}_1 = [0.4, 0.6]$ , we have two possible  $\mathbf{R}_2$ :
  - for  $\mathbf{R}_2 = [0, 0.2]$ , we have  $\mathbf{R}_1 \mathbf{R}_2 = [0.2, 0.6]$ ; this covers [0.12, 0.28], [0.28, 0.44], and [0.44, 0.6];
  - for  $\mathbf{R}_2 = [0.2, 0.4]$ , we have  $\mathbf{R}_1 \mathbf{R}_2 = [0, 0.4]$ ; this covers [-0.04, 0.12], [0.12, 0.28], and [0.28, 0.44].
- For  $\mathbf{R}_1 = [0.6, 0.8]$ , we have  $\mathbf{R}_1^2 = [0.36, 0.64]$ , so three possible  $\mathbf{R}_2$ : [0.2, 0.4], [0.4, 0.6], and [0.6, 0.8], to the total of [0.2, 0.8]. Here, [0.6, 0.8] [0.2, 0.8] = [-0.2, 0.6], so all 5 subintervals are affected.
- For  $\mathbf{R}_1 = [0.8, 1.0]$ , we have  $\mathbf{R}_1^2 = [0.64, 1.0]$ , so two possible  $\mathbf{R}_2$ : [0.6, 0.8] and [0.8, 1.0], to the total of [0.6, 1.0]. Here, [0.8, 1.0] [0.6, 1.0] = [-0.2, 0.4], so the first 4 subintervals are affected.

|   |   | $\times$ | × |   |
|---|---|----------|---|---|
|   | Х | ×        | X | Х |
|   | Х | ×        | X | Х |
| Х | Х | Х        | × | Х |
| Х |   | Х        | Х | × |

| Ge                 | neral Appi   | roach:                 |  |  |
|--------------------|--------------|------------------------|--|--|
| Interval Approach: |              |                        |  |  |
| Interval           |              |                        |  |  |
| Int                | erval        |                        |  |  |
| Sir                | nilar Situa  | tion:                  |  |  |
| Le                 | t Us Use a   | Similar                |  |  |
| На                 | w to Repr    | esent Sets             |  |  |
| На                 | w to Prop    | agate                  |  |  |
| На                 | w to Prop    | agate                  |  |  |
| Fir                | rst Exampl   | 'e:                    |  |  |
| Se                 | cond Exan    | nple:                  |  |  |
| На                 | w to Com     | pute $\mathbf{r}_{ik}$ |  |  |
| Di                 | stributivity | $a \cdot (b +$         |  |  |
| Di                 | stributivity | : New                  |  |  |
| То                 | y Example    | with                   |  |  |
| Сс                 | mputation    | Time                   |  |  |
| W                  | hat Next?    |                        |  |  |
| Pr                 | obabilistic  | Case: In               |  |  |
| Ac                 | knowledgn    | nents                  |  |  |
|                    | Title        | Page                   |  |  |
|                    |              |                        |  |  |
|                    | ••           | <b>&gt;&gt;</b>        |  |  |
|                    |              |                        |  |  |
|                    | •            |                        |  |  |
|                    |              | 0.07                   |  |  |
|                    | Page 1       | 8 of 27                |  |  |
|                    | Gol          | Back                   |  |  |
|                    |              |                        |  |  |
|                    | Full Screen  |                        |  |  |

### **18.** Distributivity: $a \cdot (b+c)$ vs. $a \cdot b + a \cdot c$

- Problem: compute the range of  $x_1 \cdot (x_2 + x_3) = x_1 \cdot x_2 + x_1 \cdot x_3$  when  $x_1 \in \mathbf{x}_1 = [0, 1], \mathbf{x}_2 = [1, 1], \text{ and } \mathbf{x}_3 = [-1, -1].$
- Actual range: we have  $x_1 \cdot (x_2 + x_3) = 0$  for all possible  $x_i$  hence the actual range is [0, 0].
- Straightforward interval computations:
  - for  $\mathbf{x}_1 \cdot (\mathbf{x}_2 + \mathbf{x}_3)$ , we get  $[0, 1] \cdot [0, 0] = [0, 0]$ ;
  - for  $\mathbf{x}_1 \cdot \mathbf{x}_2 + \mathbf{x}_1 \cdot \mathbf{x}_3$ , we get  $[0, 1] \cdot 1 + [0, 1] \cdot (-1) = [0, 1] + [-1, 0] = [-1, 1]$ , i.e., excess width.
- Reason: we have  $r_4 = x_1 \cdot x_2$ ,  $r_5 = x_1 \cdot x_3$ , but we ignore the dependence between  $r_4$  and  $r_5$ .

| Ge | eneral Appi        | roach:                 |  |  |
|----|--------------------|------------------------|--|--|
| In | Interval Approach: |                        |  |  |
| In | Interval           |                        |  |  |
| In | terval             |                        |  |  |
| Si | milar Situa        | tion:                  |  |  |
| Le | t Us Use a         | Similar                |  |  |
| Н  | ow to Repr         | esent Sets             |  |  |
| Н  | ow to Prop         | agate                  |  |  |
| Н  | ow to Prop         | agate                  |  |  |
| Fi | rst Exampl         | 'e:                    |  |  |
| Se | cond Exan          | nple:                  |  |  |
| Н  | ow to Com          | pute $\mathbf{r}_{ik}$ |  |  |
| Di | stributivity       | $a \cdot (b + \dots$   |  |  |
| Di | stributivity       | :: New                 |  |  |
| Тс | y Example          | ewith                  |  |  |
| Са | omputation         | n Time                 |  |  |
| W  | 'hat Next?         |                        |  |  |
| Pr | obabilistic        | Case: In               |  |  |
| Ad | cknowledgr         | nents                  |  |  |
|    | Title              | Page                   |  |  |
|    |                    |                        |  |  |
|    | ••                 | <b>&gt;&gt;</b>        |  |  |
|    |                    |                        |  |  |
|    | •                  |                        |  |  |
|    | Page 19 of 27      |                        |  |  |
|    |                    |                        |  |  |
|    | Go I               | Back                   |  |  |
|    |                    |                        |  |  |
|    | <b>F</b> 11 C      |                        |  |  |

### 19. Distributivity: New Approach

- Reminder:  $r_4 = r_1 \cdot r_2$ ,  $r_5 = r_1 \cdot r_3$ ,  $r_6 = r_4 + r_5$ ,  $\mathbf{r}_1 = [0, 1]$ ,  $r_2 = 1$ ,  $r_3 = -1$ .
- When we get  $r_4 = r_1 \cdot r_2$ , we compute the ranges  $\mathbf{r}_{14}$ ,  $\mathbf{r}_{24}$ , and  $\mathbf{r}_{34}$ ; the only non-trivial range is  $\mathbf{r}_{14}$ :



- For  $r_5 = r_1 \cdot r_3$ , we get  $\mathbf{r}_5 = [-1, 0]$ .
- To compute the range  $\mathbf{r}_{45}$ , for each possible box  $\mathbf{R}_1 \times \mathbf{R}_3$ , we:
  - consider all boxes  $\mathbf{R}_4$  for which  $\mathbf{R}_4 \times \mathbf{R}_1$  is possible and  $\mathbf{R}_4 \times \mathbf{R}_3$  is possible;
  - add  $\mathbf{R}_4 \times (\mathbf{R}_1 \cdot \mathbf{R}_3)$  to the set  $\mathbf{r}_{45}$ .
- Result:



- Hence, for  $r_6 = r_4 + r_5$ , we get [-0.2, 0.2].
- If we divide into more pieces, we get the enclosure closer to 0.

| General Approach:                |
|----------------------------------|
| Interval Approach:               |
| Interval                         |
| Interval                         |
| Similar Situation:               |
| Let Us Use a Similar             |
| How to Represent Sets            |
| How to Propagate                 |
| How to Propagate                 |
| First Example:                   |
| Second Example:                  |
| How to Compute $\mathbf{r}_{ik}$ |
| Distributivity: $a \cdot (b +$   |
| Distributivity: New              |
| Toy Example with                 |
| Computation Time                 |
| What Next?                       |
| Probabilistic Case: In           |
| Acknowledgments                  |
| Title Page                       |
|                                  |
| <b>44 &gt;&gt;</b>               |
|                                  |
|                                  |
| Page 20 of 27                    |
| Page 20 01 27                    |
| Go Back                          |
|                                  |
| Full Screen                      |

### 20. Toy Example with Prior Dependence

- Case study: find the range of  $r_1 r_2$  when  $\mathbf{r}_1 = [0, 1]$ ,  $\mathbf{r}_2 = [0, 1]$ , and  $|r_1 r_2| \le 0.2$ .
- Actual range: [-0.2, 0.2].
- Straightforward interval computations: [0,1] [0,1] = [-1,1].
- New approach:
  - First, we describe the set  $\mathbf{r}_{12}$ :



- Next, we compute  $\{r_1 - r_2 \mid (r_1, r_2) \in \mathbf{r}_{12}\}.$ 

• Result: [-0.2, 0.2].

| General Approach:                    |  |  |  |  |
|--------------------------------------|--|--|--|--|
| Interval Approach:                   |  |  |  |  |
| Interval                             |  |  |  |  |
| Interval                             |  |  |  |  |
| Similar Situation:                   |  |  |  |  |
| Let Us Use a Similar                 |  |  |  |  |
| How to Represent Sets                |  |  |  |  |
| How to Propagate                     |  |  |  |  |
| How to Propagate                     |  |  |  |  |
| First Example:                       |  |  |  |  |
| Second Example:                      |  |  |  |  |
| How to Compute $\mathbf{r}_{ik}$     |  |  |  |  |
| Distributivity: $a \cdot (b + \dots$ |  |  |  |  |
| Distributivity: New                  |  |  |  |  |
| Toy Example with                     |  |  |  |  |
| Computation Time                     |  |  |  |  |
| What Next?                           |  |  |  |  |
| Probabilistic Case: In               |  |  |  |  |
| Acknowledgments                      |  |  |  |  |
| Title Page                           |  |  |  |  |
|                                      |  |  |  |  |
|                                      |  |  |  |  |
|                                      |  |  |  |  |
|                                      |  |  |  |  |
| Page 21 of 27                        |  |  |  |  |
|                                      |  |  |  |  |
| Go Back                              |  |  |  |  |

Full Screen

### 21. Toy Example with Prior Dependence (cont-d)

- Case study: find the range of  $r_1 r_2$  when  $\mathbf{r}_1 = [0, 1]$ ,  $\mathbf{r}_2 = [0, 1]$ , and  $|r_1 r_2| \le 0.1$ .
- Actual range: [-0.2, 0.2].
- Straightforward interval computations: [0,1] [0,1] = [-1,1].
- New approach:
  - First, we describe the constraint in terms of subboxes:

|          |   |          | × | Х |
|----------|---|----------|---|---|
|          |   | ×        | × | Х |
|          | Х | $\times$ | Х |   |
| $\times$ | × | Х        |   |   |
| ×        | Х |          |   |   |

– Next, we compute  $\mathbf{R}_1 - \mathbf{R}_2$  for all possible pairs and take the union.

- Result: [-0.6, 0.6].
- If we divide into more pieces, we get the enclosure closer to [-0.2, 0.2].

# 22. Computation Time

- Straightforward interval computations:
  - we need to compute T intervals  $\mathbf{r}_i$ ,  $i = 1, \ldots, T$ ;
  - so, it requires O(T) steps.
- New idea:
  - we need to compute  $T^2$  sets  $\mathbf{r}_{ij}$ ,  $i, j = 1, \ldots, T$ ;
  - so, it requires  $O(T^2)$  steps.
- Conclusion:
  - $-\,$  the new method is longer than for straightforward interval computations, but
  - it is still feasible.

| General Approach:                |  |  |  |  |
|----------------------------------|--|--|--|--|
|                                  |  |  |  |  |
| Interval Approach:               |  |  |  |  |
| Interval                         |  |  |  |  |
| Interval                         |  |  |  |  |
| Similar Situation:               |  |  |  |  |
| Let Us Use a Similar             |  |  |  |  |
| How to Represent Sets            |  |  |  |  |
| How to Propagate                 |  |  |  |  |
| How to Propagate                 |  |  |  |  |
| First Example:                   |  |  |  |  |
| Second Example:                  |  |  |  |  |
| How to Compute $\mathbf{r}_{ik}$ |  |  |  |  |
| Distributivity: $a \cdot (b +$   |  |  |  |  |
| Distributivity: New              |  |  |  |  |
| Toy Example with                 |  |  |  |  |
| Computation Time                 |  |  |  |  |
| What Next?                       |  |  |  |  |
| Probabilistic Case: In           |  |  |  |  |
| Acknowledgments                  |  |  |  |  |
| Title Page                       |  |  |  |  |
|                                  |  |  |  |  |
| <b>44 &gt;&gt;</b>               |  |  |  |  |
|                                  |  |  |  |  |
|                                  |  |  |  |  |
| Page 23 of 27                    |  |  |  |  |
| Go Back                          |  |  |  |  |
| Full Screen                      |  |  |  |  |

## 23. What Next?

- *Known fact:* the range estimation problem is, in general, NP-hard (even without any dependency between the inputs).
- Corollary: our quadratic time method cannot completely avoid excess width.
- To get better estimates, in addition to sets of pairs, we can also consider sets of *triples*  $\mathbf{r}_{ijk}$ .
- This will be a  $T^3$  time version of our approach.
- We can also go to *quadruples* etc.
- Similar ideas can be applied to the case when we also have partial information about probabilities.

| General Approach:                    |  |  |  |  |  |
|--------------------------------------|--|--|--|--|--|
| Interval Approach:                   |  |  |  |  |  |
| Interval                             |  |  |  |  |  |
| Interval                             |  |  |  |  |  |
| Similar Situation:                   |  |  |  |  |  |
| Let Us Use a Similar                 |  |  |  |  |  |
| How to Represent Sets                |  |  |  |  |  |
| How to Propagate                     |  |  |  |  |  |
| How to Propagate                     |  |  |  |  |  |
| First Example:                       |  |  |  |  |  |
| Second Example:                      |  |  |  |  |  |
| How to Compute $\mathbf{r}_{ik}$     |  |  |  |  |  |
| Distributivity: $a \cdot (b + \dots$ |  |  |  |  |  |
| Distributivity: New                  |  |  |  |  |  |
| Toy Example with                     |  |  |  |  |  |
| Computation Time                     |  |  |  |  |  |
| What Next?                           |  |  |  |  |  |
| Probabilistic Case: In               |  |  |  |  |  |
| Acknowledgments                      |  |  |  |  |  |
| Title Page                           |  |  |  |  |  |
| 44 >>                                |  |  |  |  |  |
|                                      |  |  |  |  |  |
| • •                                  |  |  |  |  |  |
| Page 24 of 27                        |  |  |  |  |  |
| Go Back                              |  |  |  |  |  |
| Full Screen                          |  |  |  |  |  |

## 24. Probabilistic Case: In Brief

- *Traditionally:* expert systems use technique similar to straightforward interval computations.
- We parse F and replace each computation step with corresponding probability operation.
- *Problem:* at each step, we ignore the dependence between the intermediate results  $F_j$ .
- *Result:* intervals are too wide (and numerical estimates off).
- *Example:* the estimate for  $P(A \lor \neg A)$  is not 1.
- Solution: similarly to the above algorithm, besides  $P(F_j)$ , we also compute  $P(F_j \& F_i)$  (or  $P(F_{j_1} \& \ldots \& F_{j_k})$ ).
- On each step, use all combinations of l such probabilities to get new estimates.
- Result: e.g.,  $P(A \lor \neg A)$  is estimated as 1.

| Ge               | neral Appi   | roach:                 |  |
|------------------|--------------|------------------------|--|
| Int              | erval Appi   | roach:                 |  |
| Int              | erval        |                        |  |
| Int              | erval        |                        |  |
| Sin              | nilar Situa  | tion:                  |  |
| Let              | t Us Use a   | Similar                |  |
| Но               | w to Repr    | esent Sets             |  |
| Но               | w to Prop    | oagate                 |  |
| Но               | w to Prop    | oagate                 |  |
| Fir              | st Exampl    | le:                    |  |
| Sec              | cond Exan    | nple:                  |  |
| Но               | w to Com     | pute $\mathbf{r}_{ik}$ |  |
| Dis              | stributivity | $a \cdot (b + \ldots)$ |  |
| Dis              | stributivity | : New                  |  |
| To               | y Example    | ewith                  |  |
| Computation Time |              |                        |  |
| What Next?       |              |                        |  |
| Pro              | obabilistic  | Case: In               |  |
| Ac               | knowledgr    | nents                  |  |
|                  | Title        | Page                   |  |
|                  |              |                        |  |
|                  | 44           | <b>&gt;&gt;</b>        |  |
|                  | •            |                        |  |
|                  |              |                        |  |
| Page 25 of 27    |              |                        |  |
|                  | Go           | Back                   |  |
|                  |              |                        |  |
|                  |              |                        |  |

Full Screen

## 25. Acknowledgments

This work was supported in part:

- by NASA under cooperative agreement NCC5-209,
- by NSF grant EAR-0225670,
- by NIH grant 3T34GM008048-20S1,
- by Army Research Lab grant DATM-05-02-C-0046,
- by Star Award from the University of Texas System,
- by Texas Department of Transportation grant No. 0-5453, and
- by the workshop organizers.

Many thanks to:

- Luc Jaulin,
- Arnold Neumaier, and
- Bill Walster

for valuable suggestions.

| General Approach:                |
|----------------------------------|
| Interval Approach:               |
| Interval                         |
| Interval                         |
| Similar Situation:               |
| Let Us Use a Similar             |
| How to Represent Sets            |
| How to Propagate                 |
| How to Propagate                 |
| First Example:                   |
| Second Example:                  |
| How to Compute $\mathbf{r}_{ik}$ |
| Distributivity: $a \cdot (b +$   |
| Distributivity: New              |
| Toy Example with                 |
| Computation Time                 |
| What Next?                       |
| Probabilistic Case: In           |
| Acknowledgments                  |
| Title Page                       |
|                                  |
| <b>44 &gt;&gt;</b>               |
| • •                              |
| Page 26 of 27                    |
| - 1 age 20 01 21                 |
| Go Back                          |
| Full Screen                      |

### 26. When is the New Method Exact?

- Straightforward interval computations are exact for single-use expressions (SUE).
- Our method is exact for x x,  $x x^2$ , and  $x_1 \cdot x_2 + x_1 \cdot x_3$ .
- In all these expressions, each variable occurs no more than twice.
- *Hypothesis:* the new method is exact for all "double-use" expressions (DUE).
- Counterexample:

- variance is DUE 
$$V = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i^2 - \left(\frac{1}{n} \cdot \sum_{i=1}^{n} x_i\right)^2$$
, but

– computing the range of variance on interval data  $\mathbf{x}_i$  is NP-hard.

- Counterexample to another reasonable hypothesis: range estimation is NP-hard even for SUE expressions with linear SUE constraints.
- Open question: when is the new method exact?

| General Approach:                    |
|--------------------------------------|
| Interval Approach:                   |
| Interval                             |
| Interval                             |
| Similar Situation:                   |
| Let Us Use a Similar                 |
| How to Represent Sets                |
| How to Propagate                     |
| How to Propagate                     |
| First Example:                       |
| Second Example:                      |
| How to Compute $\mathbf{r}_{ik}$     |
| Distributivity: $a \cdot (b + \dots$ |
| Distributivity: New                  |
| Toy Example with                     |
| Computation Time                     |
| What Next?                           |
| Probabilistic Case: In               |
| Acknowledgments                      |
| Title Page                           |
|                                      |
| <b>▲ ▲</b>                           |
|                                      |
|                                      |
| Page 27 of 27                        |
| Go Back                              |
| Full Screen                          |