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1. General Problem of Data Processing under Uncer-
tainty

• Indirect measurements: way to measure y that are are difficult (or even im-
possible) to measure directly.

• Idea: y = f(x1, . . . , xn)

-

· · ·

-

-

x̃n

x̃2

x̃1

-ỹ = f(x̃1, . . . , x̃n)f

• Problem: measurements are never 100% accurate: x̃i 6= xi (∆xi 6= 0) hence

ỹ = f(x̃1, . . . , x̃n) 6= y = f(x1, . . . , yn).

What are bounds on ∆y
def= ỹ − y?
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2. Probabilistic and Interval Uncertainty

-

. . .

-

-

∆xn

∆x2

∆x1

-∆yf

• Traditional approach: we know probability distribution for ∆xi (usually
Gaussian).

• Where it comes from: calibration using standard MI.

• Problem: sometimes we do not know the distribution because no “standard”
(more accurate) MI is available. Cases:

– fundamental science

– manufacturing

• Solution: we know upper bounds ∆i on |∆xi| hence

xi ∈ [x̃i −∆i, x̃i + ∆i].
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3. Interval Computations: A Problem

-

· · ·

-

-

xn

x2

x1

-y = f(x1, . . . ,xn)f

• Given:

• an algorithm y = f(x1, . . . , xn) that transforms n real numbers xi into
a number y;

• n intervals xi = [xi, xi].

• Compute: the corresponding range of y:

[y, y] = {f(x1, . . . , xn) |x1 ∈ [x1, x1], . . . , xn ∈ [xn, xn]}.

• Fact: even for quadratic f , the problem of computing the exact range y is
NP-hard.

• Practical challenges:

– find classes of problems for which efficient algorithms are possible; and
– for problems outside these classes, find efficient techniques for approxi-

mating uncertainty of y.
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4. Why Not Maximum Entropy?

• Situation: in many practical applications, it is very difficult to come up with
the probabilities.

• Traditional engineering approach: use probabilistic techniques.

• Problem: many different probability distributions are consistent with the
same observations.

• Solution: select one of these distributions – e.g., the one with the largest
entropy.

• Example – single variable: if all we know is that x ∈ [x, x], then MaxEnt
leads to a uniform distribution on [x, x].

• Example – multiple variables: different variables are independently distrib-
uted.

• Conclusion: if ∆y = ∆x1 + . . . + ∆xn, with ∆xi ∈ [−∆i,∆i], then due to

Central Limit Theorem, ∆y is almost normal, with σ =
1√
3
·

√√√√ n∑
i=1

∆2
i .

• Why this may be inadequate: when ∆i = ∆, we get ∆ ∼
√

n, but due to
correlation, it is possible that ∆ = n ·∆i ∼ n �

√
n.

• Conclusion: using a single distribution can be very misleading, especially if
we want guaranteed results – e.g., in high-risk application areas such as space
exploration or nuclear engineering.
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5. General Approach: Interval-Type Step-by-Step Tech-
niques

• Problem: it is difficult to compute the range y.

• Solution: compute an enclosure Y such that y ⊆ Y.

• Interval arithmetic: for arithmetic operations f(x1, x2), we have explicit for-
mulas for the range.

• Examples: when x1 ∈ x1 = [x1, x1] and x2 ∈ x2 = [x2, x2], then:

– The range x1 + x2 for x1 + x2 is [x1 + x2, x1 + x2].

– The range x1 − x2 for x1 − x2 is [x1 − x2, x1 − x2].

– The range x1 · x2 for x1 · x2 is [y, y], where

y = min(x1 · x2, x1 · x2, x1 · x2, x1 · x2);

y = max(x1 · x2, x1 · x2, x1 · x2, x1 · x2).

• The range 1/x1 for 1/x1 is [1/x1, 1/x1] (if 0 6∈ x1).
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6. Interval Approach: Example

• Example: f(x) = (x− 2) · (x + 2), x ∈ [1, 2].

• How will the computer compute it?

• r1 := x− 2;

• r2 := x + 2;

• r3 := r1 · r2.

• Main idea: do the same operations, but with intervals instead of numbers:

• r1 := [1, 2]− [2, 2] = [−1, 0];

• r2 := [1, 2] + [2, 2] = [3, 4];

• r3 := [−1, 0] · [3, 4] = [−4, 0].

• Actual range: f(x) = [−3, 0].

• Comment: this is just a toy example, there are more efficient ways of com-
puting an enclosure Y ⊇ y.
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7. Interval Computations: Analysis

• Computation time: ≤ 4 arithmetic operations per original operation, so O(T ),
where T is the running time of the original algorithm.

• Result: often, enclosure Y ⊇ y with excess width.

• Reason: there is a relation between intermediate results, and we ignore it in
straightforward interval computations.

• Alternative: we can compute the exact range: e.g., Tarksi algorithm for
algebraic f .

• Computation time: can be exponential O(2T ).

• Summarizing: we have two algorithms:

– a fast and efficient O(T ) algorithm which often has large excess width;

– a slow and inefficient (often non-feasible) algorithm with no excess width.

• It is desirable: to develop a sequence of feasible algorithms with:

– longer and longer computation time and

– smaller and smaller excess width.



General Problem of . . .

Probabilistic and . . .

Interval . . .

Why Not Maximum . . .

General Approach: . . .

Interval Approach: . . .

Interval . . .

Interval . . .

Similar Situation: . . .

Let Us Use a Similar . . .

How to Represent Sets

How to Propagate . . .

How to Propagate . . .

First Example: . . .

Second Example: . . .

How to Compute rik

Distributivity: a · (b + . . .

Distributivity: New . . .

Toy Example with . . .

Computation Time

What Next?

Probabilistic Case: In . . .

Acknowledgments

Title Page

JJ II

J I

Page 9 of 27

Go Back

Full Screen

Close

Quit

8. Interval Computations: Limitations

• Traditional interval computations:

– we know the intervals xi of possible values of different parameters xi,
and

– we assume that an arbitrary combination of these values is possible.

• In geometric terms: the set of possible combinations x = (x1, . . . , xn) is a
box x = x1 × . . .× xn.

• In practice: we also know additional restrictions on the possible combinations
of xi.

• Example: in geosciences, in addition to intervals for velocities vi at different
points, we know that |vi − vj | ≤ ∆ for neighboring points:

�
�

�
�

�
�

�
�

• Example: in nuclear engineering, experts often state that combinations of
extreme values are impossible, we have an ellipsoid, not a box.
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9. Similar Situation: Statistics

• Ideally, we should take into account dependence between all the variables.

• In the first approximation, it is often reasonable to consider them indepen-
dent.

• In the next approximation, we consider pairwise dependencies.

• To get an even better picture, we can consider dependencies between triples,
etc.

• As a result, we get a sequence of methods which:

– require more and more time

– but at the same time lead to more and more accurate results.
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10. Let Us Use a Similar Idea for Interval Uncertainty

• Ideally, we should take the box x1 × . . . × xn (or appropriate subset of the
box), divide it into smaller boxes, estimate the range over each small box,
and combine the results.

• This requires Cn subboxes – i.e., exponential time.

• In straightforward interval computations, we consider only intervals of possi-
ble values of xi.

• A natural next approximation is when we consider:

– sets xi of possible values of xi, and also

– sets xij of possible pairs (xi, xj).

• Third approximation: we also consider possible sets of triples, etc.

• As a result, we hope to get a sequence of methods which:

– require more and more time

– but at the same time lead to more and more accurate results.
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11. How to Represent Sets

• First idea: do it in a way cumulative probability distributions (cdf) are rep-
resented in RiskCalc package: by discretization.

• In RiskCalc, we:

– divide the interval [0, 1] of possible values of probability into, say, 10
subintervals of equal width and

– represent cdf F (x) by 10 values x1, . . . , x10 at which F (xi) = i/10.

• Similarly, we:

– divide the box xi × xj into, say, 10× 10 subboxes and

– describe the set xij by listing all subboxes which contain possible pairs.

• Comment:

– A more efficient idea is to represent this set by a covering paving – in
the style of Jaulin et al. – i.e., consider boxes of different sizes starting
with larger ones and only decrease the size when necessary.

– It is also possible (and often efficient) to use ellipsoids.

– Idea is similar to rough sets.
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12. How to Propagate This Uncertainty: A Problem
and General Idea

Problem:

• In the beginning: we know the intervals r1, . . . , rn corresponding to the input
variables ri = xi, and we know the sets rij for i, j from 1 to n.

• Question: propagate this information through an intermediate computation
step, a step of computing rk = ra ∗ rb for some arithmetic operation ∗ and
for previous results ra and rb (a, b < k).

• By the time we come to this step, we know the intervals ri and the sets rij

for i, j < k.

• We want to find the interval rk for xk, and the sets rik for i < k.

General idea:

• The range rk can be naturally found as {ra ∗ rb | (ra, rb) ∈ rab}.

• The set rak is described as {(ra, ra ∗ rb) | (ra, rb) ∈ rab}.

• The set rbk is described as {(rb, ra ∗ rb) | (ra, rb) ∈ rab}.

• For i 6= a, b, the set rik is described as

{(ri, ra ∗ rb) | (ri, ra) ∈ ria, (ri, rb) ∈ rib}.

• Comment. This is related to join

rai oni rib = {(ra, ri, rb) | (ra, ri) ∈ rai, (ri, rb) ∈ rib}.
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13. First Example: Computing the Range of x− x

• Problem:

– for f(x) = x− x on [0, 1], the actual range is [0, 0];

– straightforward interval computations lead to an enclosure [0, 1]−[0, 1] =
[−1, 1].

• In straightforward interval computations:

– we have r1 = x with interval r1 = [0, 1];

– we have r2 = x with interval x2 = [0, 1];

– the variables r1 and r2 are dependent, but we ignore this dependence.

• In the new approach: we have r1 = r2 = [0, 1], and we also have r12:

�
�

�
�

�

• The resulting set is the exact range {0} = [0, 0].
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14. How to Propagate This Uncertainty: Numerical
Implementation

• First step: computing rk:

– In our representation, the set xab consists of small 2-D boxes Xa ×Xb.

– For each small box Xa ×Xb, we use interval arithmetic to compute the
range Xa ∗Xb of the value ra ∗ rb over this box.

– Then, we take the union (interval hull) of all these ranges.

• Second step: computing rik:

– We consider the sets rab, rai, and rbi.

– For each small box Ra ×Rb from rab, we:

∗ consider all subintervals Ri for which Ra×Ri is in rai and Rb×Ri

is in rbi, and then
∗ we add (Ra ∗Rb)×Ri to the set rki.

– To be more precise:

∗ since the interval Ra ∗Rb may not have bounds of the type p/10,
∗ we may need to expand it to get within bounds of the desired type.

• We repeat these computations step by step until we get the desired estimate
for the range of the final result of the computations.
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15. First Example: Computing the Range of x − x

(cont-d)

• Problem:

– for f(x) = x− x on [0, 1], the actual range is [0, 0];

– straightforward interval computations lead to an enclosure [0, 1]−[0, 1] =
[−1, 1].

• In straightforward interval computations:

– we have r1 = x with interval r1 = [0, 1];

– we have r2 = x with interval x2 = [0, 1];

– the variables r1 and r2 are dependent, but we ignore this dependence.

• In the new approach: we have r1 = r2 = [0, 1], and we also have r12:

×
×
×
×
×

• For each small box, we have [−0.2, 0.2], so the union is [−0.2, 0.2].

• If we divide into more pieces, we get close to 0.
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16. Second Example: Computing the Range of x−x2

• In straightforward interval computations:

– we have r1 = x with interval r1 = [0, 1];

– we have r2 = x2 with interval x2 = [0, 1];

– the variables r1 and r2 are dependent, but we ignore this dependence
and estimate r3 as [0, 1]− [0, 1] = [−1, 1].

• In the new approach: we have r1 = r2 = [0, 1], and we also have r12:

– the union of R2
1 is [0, 1], so we have [0, 0.2], [0.2, 0.4], etc.;

– for R1 = [0, 0.2], we have R2
1 = [0, 0.04], so only [0, 0.2] is affected;

– for R1 = [0.2, 0.4], we have R2
1 = [0.04, 0.16], so only [0, 0.2] is affected;

– for R1 = [0.4, 0.6], we have R2
1 = [0.16, 0.25], so [0, 0.2] and [0.2, 0.4] are

affected, etc.

×××
××
×
××
×

• For each possible pair of small boxes R1×R2, we have R1−R2 = [−0.2, 0.2],
[0, 0.4] and [0.2, 0.6], so the union of R1 −R2 is r3 = [−0.2, 0.6].

• If we divide into more pieces, we get closer to [0, 0.25].
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17. How to Compute rik

• Since r3 = [−0.2, 0.6], we divide this range into 5 subintervals [−0.2,−0.04],
[−0.04, 0.12], [0.12, 0.28], [0.28, 0.44], [0.44, 0.6].

• For R1 = [0, 0.2], the only possible R2 is [0, 0.2], so R1 −R2 = [−0.2, 0.2].
This covers [−0.2,−0.04] and [−0.04, 0.12].

• For R1 = [0.2, 0.4], the only possible R2 is [0, 0.2], so R1 − R2 = [0, 0.4].
This covers [−0.04, 0.12], [0.12, 0.28], and [0.28, 0.44].

• For R1 = [0.4, 0.6], we have two possible R2:

– for R2 = [0, 0.2], we have R1 −R2 = [0.2, 0.6]; this covers [0.12, 0.28],
[0.28, 0.44], and [0.44, 0.6];

– for R2 = [0.2, 0.4], we have R1 −R2 = [0, 0.4]; this covers [−0.04, 0.12],
[0.12, 0.28], and [0.28, 0.44].

• For R1 = [0.6, 0.8], we have R2
1 = [0.36, 0.64], so three possible R2: [0.2, 0.4],

[0.4, 0.6], and [0.6, 0.8], to the total of [0.2, 0.8]. Here, [0.6, 0.8] − [0.2, 0.8] =
[−0.2, 0.6], so all 5 subintervals are affected.

• For R1 = [0.8, 1.0], we have R2
1 = [0.64, 1.0], so two possible R2: [0.6, 0.8]

and [0.8, 1.0], to the total of [0.6, 1.0]. Here, [0.8, 1.0]− [0.6, 1.0] = [−0.2, 0.4],
so the first 4 subintervals are affected.

×
××
×
×

×
×
×
×
×

×
×
×
×
×

×
×
×
×
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18. Distributivity: a · (b + c) vs. a · b + a · c
• Problem: compute the range of x1 · (x2 + x3) = x1 · x2 + x1 · x3 when x1 ∈

x1 = [0, 1], x2 = [1, 1], and x3 = [−1,−1].

• Actual range: we have x1 · (x2 + x3) = 0 for all possible xi hence the actual
range is [0, 0].

• Straightforward interval computations:

– for x1 · (x2 + x3), we get [0, 1] · [0, 0] = [0, 0];

– for x1 ·x2+x1 ·x3, we get [0, 1] ·1+[0, 1] ·(−1) = [0, 1]+[−1, 0] = [−1, 1],
i.e., excess width.

• Reason: we have r4 = x1 · x2, r5 = x1 · x3, but we ignore the dependence
between r4 and r5.
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19. Distributivity: New Approach

• Reminder: r4 = r1 · r2, r5 = r1 · r3, r6 = r4 + r5, r1 = [0, 1], r2 = 1, r3 = −1.

• When we get r4 = r1 · r2, we compute the ranges r14, r24, and r34; the only
non-trivial range is r14:

×
×
×
×
×

• For r5 = r1 · r3, we get r5 = [−1, 0].

• To compute the range r45, for each possible box R1 ×R3, we:

– consider all boxes R4 for which R4 × R1 is possible and R4 × R3 is
possible;

– add R4 × (R1 ·R3) to the set r45.

• Result:

×
×
×
×
×

• Hence, for r6 = r4 + r5, we get [−0.2, 0.2].

• If we divide into more pieces, we get the enclosure closer to 0.
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20. Toy Example with Prior Dependence

• Case study: find the range of r1 − r2 when r1 = [0, 1], r2 = [0, 1], and
|r1 − r2| ≤ 0.2.

• Actual range: [−0.2, 0.2].

• Straightforward interval computations: [0, 1]− [0, 1] = [−1, 1].

• New approach:

– First, we describe the set r12:

�
�

�
�

�
�

�
�

– Next, we compute {r1 − r2 | (r1, r2) ∈ r12}.

• Result: [−0.2, 0.2].
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21. Toy Example with Prior Dependence (cont-d)

• Case study: find the range of r1 − r2 when r1 = [0, 1], r2 = [0, 1], and
|r1 − r2| ≤ 0.1.

• Actual range: [−0.2, 0.2].

• Straightforward interval computations: [0, 1]− [0, 1] = [−1, 1].

• New approach:

– First, we describe the constraint in terms of subboxes:

×
×
×
×
×
×
×
×
×
×
×
×
×

– Next, we compute R1 −R2 for all possible pairs and take the union.

• Result: [−0.6, 0.6].

• If we divide into more pieces, we get the enclosure closer to [−0.2, 0.2].
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22. Computation Time

• Straightforward interval computations:

– we need to compute T intervals ri, i = 1, . . . , T ;

– so, it requires O(T ) steps.

• New idea:

– we need to compute T 2 sets rij , i, j = 1, . . . , T ;

– so, it requires O(T 2) steps.

• Conclusion:

– the new method is longer than for straightforward interval computations,
but

– it is still feasible.
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23. What Next?

• Known fact: the range estimation problem is, in general, NP-hard (even
without any dependency between the inputs).

• Corollary: our quadratic time method cannot completely avoid excess width.

• To get better estimates, in addition to sets of pairs, we can also consider sets
of triples rijk.

• This will be a T 3 time version of our approach.

• We can also go to quadruples etc.

• Similar ideas can be applied to the case when we also have partial information
about probabilities.
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24. Probabilistic Case: In Brief

• Traditionally: expert systems use technique similar to straightforward inter-
val computations.

• We parse F and replace each computation step with corresponding probabil-
ity operation.

• Problem: at each step, we ignore the dependence between the intermediate
results Fj .

• Result: intervals are too wide (and numerical estimates off).

• Example: the estimate for P (A ∨ ¬A) is not 1.

• Solution: similarly to the above algorithm, besides P (Fj), we also compute
P (Fj &Fi) (or P (Fj1 & . . . &Fjk

)).

• On each step, use all combinations of l such probabilities to get new estimates.

• Result: e.g., P (A ∨ ¬A) is estimated as 1.
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26. When is the New Method Exact?

• Straightforward interval computations are exact for single-use expressions
(SUE).

• Our method is exact for x− x, x− x2, and x1 · x2 + x1 · x3.

• In all these expressions, each variable occurs no more than twice.

• Hypothesis: the new method is exact for all “double-use” expressions (DUE).

• Counterexample:

– variance is DUE V =
1
n
·

n∑
i=1

x2
i −

(
1
n
·

n∑
i=1

xi

)2

, but

– computing the range of variance on interval data xi is NP-hard.

• Counterexample to another reasonable hypothesis: range estimation is NP-
hard even for SUE expressions with linear SUE constraints.

• Open question: when is the new method exact?
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