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Motivating Example – Bioreactor Simulation

• In a bioreactor, microbial growth may be described by

Ẋ = (µ − αD)X

Ṡ = D(Si − S) − kµX,

where X and S are concentrations of biomass and substrate, respectively.

• The growth rate µ may be given by

µ =
µmS

KS + S
(Monod Law)

or

µ =
µmS

KS + S + KIS2
(Haldane Law)
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Motivating Example – Bioreactor Simulation

• Problem data

Value Units Value Units

α 0.5 - µm [1.19, 1.21] day−1

k 10.53 g S/ g X KS [7.09, 7.11] g S/l

D 0.36 day−1 KI [0.49, 0.51] (g S/l)−1

Si 5.7 g S/l X0 [0.82, 0.84] g X/l

S0 0.80 g S/l

• Three parameters (µm, KS and KI ) and one initial state (X0) are uncertain

and given by intervals.

• Problem: Determine a validated enclosure of all possible solutions to this

ODE system.

• Issue: Standard tools for validated solution of ODEs are designed to deal with

interval-valued initial states, not interval-valued parameters.
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Problem Definition

• Consider

ẋ = f(x, θ)

x(t0) = x0 ∈ X0

θ ∈ Θ

x = state vector (m variables)

θ = parameter vector (p parameters)

X0 = interval enclosure of x0

Θ = interval enclosure of θ

• Consider time steps hj = tj+1 − tj , j = 0, . . . , N − 1

• Notation: x(t; tj , xj , θ) denotes a solution of ẋ = f(x, θ) for the initial

condition x = xj at t = tj and x(t; tj , Xj ,Θ) is the set of solutions

x(t; tj , Xj ,Θ) = {x(t; tj , xj , θ) | xj ∈ Xj , θ ∈ Θ}

• Problem: Determine enclosures Xj of the state variables at each time tj ,

j = 1, . . . , N , such that x(tj ; t0, X0,Θ) ⊆ Xj

5



Background – Interval Taylor Series

• In an Taylor series expansion of x(t) with respect to t, the coefficients can be

obtained recursively in terms of ẋ(t) = f(x, θ) using

f [0] = x

f [1] = f(x, θ)

f [i] =
1

i

(

∂f [i−1]

∂x
f

)

(x, θ), i ≥ 2.

• Values of these coefficients can be easily generated using automatic

differentiation techniques.

• For an interval Taylor series (ITS), the coefficients F [i] are interval

enclosures of f [i].
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Background – Taylor Models

• Taylor Model Tf = (pf , Rf ): Bounds a function f(x) over X using a q-th

order Taylor polynomial pf and an interval remainder bound Rf , usually from

a truncated Taylor series.

pf =
q
∑

i=0

1
i! [(x − x0) · 5]i f (x0)

Rf = 1
(q+1)! [(x − x0) · 5]

q+1
F [x0 + (x − x0)ζ]

where,

x0 ∈ X; ζ ∈ [0, 1]

[g · 5]
k

=
∑

j1+···+jm=k

0≤j1,··· ,jm≤k

k!
j1!···jm!g

j1
1 · · · gjm

m
∂k

∂x
j1
1 ···∂x

jm
m

• Store and operate on coefficients of pf only. Floating point errors are

accumulated in Rf .
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Background – Taylor Model Operations

• Taylor model of f ± g

f ± g ∈ (pf , Rf ) ± (pg, Rg) = (pf ± pg, Rf ± Rg)

Tf±g = (pf±g, Rf±g) = (pf ± pg, Rf ± Rg)

• Taylor model of f × g

f × g ∈ (pf , Rf ) × (pg, Rg)

⊆ pf × pg + pf × Rg + pg × Rf + Rf × Rg

Split pf × pg into q-th order part pf×g and higher-order terms pe. Then

Tf×g = (pf×g, Rf×g)

Rf×g = B(pe) + B(pf ) × Rg + B(pg) × Rf + Rf × Rg

B(p) indicates an interval bound on the function p.

• Reciprocal operation and intrinsic functions can also be defined.
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Background – Interval IVPs

• Consider standard ODE system (non-parametric)

ẋ = f(x)

x(t0) = x0 ∈ X0

• “Standard” approach (step j + 1): Assuming Xj is known, then

– Phase 1: Compute a coarse enclosure X̃j and prove existance and

uniqueness. Use fixed point iteration with Picard operator using high-order

interval Taylor series.

– Phase 2: Refine the coarse enclosure to obtain Xj+1. Use high-order

interval Taylor series with Taylor coefficients bounded using mean value

theorem. Reduce wrapping effect using QR-factorization approach.

• Implementations include AWA and VNODE.
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Method for Parametric ODEs

• Consider again parametric ODE system

ẋ = f(x, θ)

x(t0) = x0 ∈ X0

θ ∈ Θ

• To apply standard methods, can treat parameters as additional state variables

with zero derivative (Lohner, 1988)

• Our method for parametric ODE system: Assuming Xj is known, then

– Phase 1: Same as “standard” approach. Compute a coarse enclosure X̃j

and prove existance and uniqueness. Use fixed point iteration with Picard

operator using high-order interval Taylor series.

– Phase 2: Refine the coarse enclosure to obtain Xj+1. Use Taylor models

in terms of the uncertain parameters and initial states.

• Implemented in VSPODE (Validating Solver for Parametric ODEs) (Lin and

Stadtherr, 2005).
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Method for Phase 2

• Represent uncertain initial states and parameters using Taylor models T x0

and T θ , with components

Txi0 = (m(Xi0) + (xi0 − m(Xi0)), [0, 0]), i = 1, · · · , m

Tθi
= (m(Θi) + (θi − m(Θi)), [0, 0]), i = 1, · · · , p.

• Compute Taylor models T f [i] for the interval Taylor series coefficients using

Taylor model operations and obtain the polynomial part of T xj+1 .

• Determine the remainder bound of T xj+1 by the mean value theorem and

reduce the wrapping effect using a QR factorization approach, where the

remainder is represented by Rxj+1 = Aj+1V j+1.

• Compute the enclosure Xj+1 = B(T xj+1) by bounding over X0 and Θ.
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Examples and Results

• Computations done with Intel Pentium 4 3.2GHz CPU on a Linux workstation.

• For comparsions, VNODE was used, with interval parameters treated as

additional state variables

• VSPODE run using

→ q = 5 (order of Taylor model)

→ k = 17 (order of interval Taylor series)

→ QR

• VNODE run using

→ k = 17 order interval Hermite-Obreschkoff

→ QR
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Example 1. Lotka-Volterra Problem

• ODE model is

ẋ1 = θ1x1(1 − x2)

ẋ2 = θ2x2(x1 − 1)

x0 = (1.2, 1.1)T

θ1 ∈ [2.99, 3.01]

θ2 ∈ [0.99, 1.01]

• Integrate from t0 = 0 to tN = 10.

• Constant step size of h = 0.1 used in both VSPODE and VNODE.
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Example 1. Lotka-Volterra Problem
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Example 1. Lotka-Volterra Problem

• To allow VNODE to integrate further:

– Parameters intervals can be subdivided into equal-sized subintervals.

– Apply VNODE to each parameter subinterval.

– Final enclosure is the union of enclosures determined from each

subinterval.

• VNODE-NN indicates use of NN parameter subintervals.
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Example 1. Lotka-Volterra Problem

Method Final Enclosure (t = 10) Width CPU time (s)

VSPODE [ 1.120873, 1.173607 ] 0.052734 0.59

[ 0.875994, 0.893471 ] 0.017477

VNODE–16 [ 1.110859, 1.182814 ] 0.071955 1.42

[ 0.872528, 0.898407 ] 0.025879

VNODE–36 [ 1.116350, 1.177431 ] 0.061081 3.14

[ 0.874924, 0.895612 ] 0.020688

VNODE–64 [ 1.118151, 1.175692 ] 0.057541 5.59

[ 0.875651, 0.894736 ] 0.019085

VNODE–100 [ 1.118999, 1.174881 ] 0.055882 8.68

[ 0.875975, 0.894337 ] 0.018362
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Example 2. Lorenz Problem

• ODE model is

ẋ1 = θ1(x2 − x1)

ẋ2 = x1(θ2 − x3) − x2

ẋ3 = x1x2 − θ3x3

x0 = (10, 10, 10)T

θ1 ∈ 10 + [−0.01, 0.01]

θ2 ∈ 28 + [−0.01, 0.01]

θ3 ∈ 8/3 + [−0.01, 0.01]

• Integrate from t0 = 0 to tN = 2.

• Constant step size of h = 0.01 used in both VSPODE and VNODE.
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Example 2. Lorenz Problem
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Example 2. Lorenz Problem

Method Final Enclosure (t = 2) Width CPU time (s)

VSPODE [ -0.582033, -0.342358 ] 0.2397 2.66

[ -0.769513, -0.369357 ] 0.4002

[ 14.633803, 14.737535 ] 0.1037

VNODE–125 [ -8.663336, 7.988072 ] 16.6514 33.7

[ -10.060512, 8.797511 ] 18.8580

[ 9.031894, 21.106684 ] 12.0748

VNODE–512 [ -0.920184, 0.041287 ] 0.9615 141.5

[ -1.321734, 0.245595 ] 1.5673

[ 14.352124, 15.010891 ] 0.6588

VNODE–1000 [ -0.770156, -0.136139 ] 0.6340 263.1

[ -1.077794, -0.036474 ] 1.0413

[ 14.502030, 14.869122 ] 0.3671
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Example 3. Double Pendulum Problem
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Example 3. Double Pendulum Problem

• ODE model is

θ̇1 = ω1

θ̇2 = ω2

ω̇1 =
−g(2m1 + m2) sin θ1 − m2g sin(θ1 − 2θ2) − 2m2 sin(θ1 − θ2)

[

ω2
2L2 − ω2

1L1 cos(θ1 − θ2)
]

L1 [2m1 + m2 − m2 cos(2θ1 − 2θ2)]

ω̇2 =
2 sin(θ1 − θ2)

[

ω2
1L1(m1 + m2) + g(m1 + m2) cos θ1 + ω2

2L2m2 cos(θ1 − θ2)
]

L2 [2m1 + m2 − m2 cos(2θ1 − 2θ2)]
,

• Local acceleration of gravity g ∈ [9.79, 9.81] m/s2.

• This corresponds roughly to the variation in sea level g between 25◦ and 49◦

latitude (i.e. spanning the contiguous United States).

• Two cases for initial states:

– Relatively high energy: (θ1, θ2, ω1, ω2)0 = (0.75π, 0.5π, 0, 0)

– Relatively low energy: (θ1, θ2, ω1, ω2)0 = (0,−0.25π, 0, 0)

• Variable step size used in both VSPODE and VNODE.
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Example 3. Double Pendulum Problem
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Example 3. Double Pendulum Problem
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Example 4. Bioreactor Problem

• In a bioreactor, microbial growth may be described by

Ẋ = (µ − αD)X

Ṡ = D(Si − S) − kµX,

where X and S are concentrations of biomass and substrate, respectively.

• The growth rate µ may be given by

µ =
µmS

KS + S
(Monod Law)

or

µ =
µmS

KS + S + KIS2
(Haldane Law)
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Example 4. Bioreactor Problem

• Problem data

Value Units Value Units

α 0.5 - µm [1.19, 1.21] day−1

k 10.53 g S/ g X KS [7.09, 7.11] g S/l

D 0.36 day−1 KI [0.49, 0.51] (g S/l)−1

Si 5.7 g S/l X0 [0.82, 0.84] g X/l

S0 0.80 g S/l

• Integrate from t0 = 0 to tN = 20.

• Constant step size of h = 0.1 used in both VSPODE and VNODE.
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Example 4. Bioreactor Problem – Monod Law
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Example 4. Bioreactor Problem – Monod Law

Method Final Enclosure (t = 20) Width CPU time (s)

VSPODE [ 0.8386, 0.8450 ] 0.0064 1.34

[ 1.2423, 1.2721 ] 0.0298

VNODE–343 [ 0.8359, 0.8561 ] 0.0202 68.6

[ 1.2309, 1.2814 ] 0.0505

VNODE–512 [ 0.8375, 0.8528 ] 0.0153 102.8

[ 1.2331, 1.2767 ] 0.0436

VNODE–1000 [ 0.8380, 0.8502 ] 0.0122 263.1

[ 1.2359, 1.2732 ] 0.0373
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Example 4. Bioreactor Problem – Haldane Law
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Related Problem – State and Parameter Estimation

• Consider again the bioreactor problem.

• Bounded-error (1%) measurements of S at tj , j = 1, . . . , N are available.

• Estimate the other state variable X and the parameters µm, KS and KI .

• New problem data

Value Units Value Units

α 0.5 - µm [1.0, 1.4] day−1

k 10.53 g S/ g X KS [6, 8] g S/l

D 0.36 day−1 KI [0.0025, 0.01] (g S/l)−1

Si 5.7 g S/l X0 [0.4, 1.2] g X/l

S0 0.8 × [0.99, 1.01] g S/l

• Use VSPODE with constraint propagation procedure on Taylor models (Lin

and Stadtherr, 2006).
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State Estimate
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Parameter Estimate
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Concluding Remarks

• The validated solution of parametric ODEs is a subproblem in many

applications of interest.

• An approach was demonstrated for the direct handling of uncertainty in model

parameters in the validated solution of ODEs.

• A standard two-phase approach was used

– The dependence on t was handled using an interval Taylor series

approach, as in standard methods (e.g. VNODE).

– The dependence on parameters (and initial states) was handled using

Taylor models in Phase 2 of the approach.

• Significant performance improvements were observed in comparison with

VNODE.
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