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Computational Aeroelasticity

numerical simulation of both fluid and structure motion

fluid-structure mutual interaction

structure motion → fluid characterization
aerodynamical forces → structural motion

Goals

determine the safe region (critical velocity)

simulate post-critical regimes (nonlinear aeroelasticity)
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RANS equations - turbulence models
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Navier-Stokes System of Equations

Navier-Stokes system

∂v

∂t
+ (v · ∇) v +∇p − ν4v = 0

∇ · v = 0 in Ωt

v - fluid velocity

p - pressure

Navier-Stokes system of equations
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Sváček, P.

Outline

Introduction

Mathematical
Model

General Model

Simplifications

Interface
Conditions

Numerical
Approximation

Numerical
Results

Conclusions

Reynolds Averaged Navier-Stokes equations

Navier-Stokes system

∂v

∂t
+ v · ∇v +∇p − ν4v = 0

∇ · v = 0 in Ωt

Reynolds Averaging

v = V + v′, p = P + p′, such that v = V

RANS equations

∂Vi

∂t
− ν4Vi + (V · ∇) Vi +

∂P

∂xi
=

∑
j

∂

∂xj

(
−v ′i v

′
j

)
,

Reynolds-Stresses σR
ij = −v ′i v

′
j
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Turbulence model - SA model

Reynolds-Stresses approximation σR
ij = −v ′i v

′
j

Reynolds stresses are approximated

σR
ij =

2

3
kδij + νT

(
∂Vi

∂xj
+
∂Vj

∂xi

)
, νT ≈ ν̃,

Turbulence Modelling - Spallart-Almaras Model

∂ν̃

∂t
+ (V · ∇)ν̃ =

1

σ

∂

∂xi

(
(ν + ν̃)

∂ν̃

∂xi

)
+

cb2

σ
(∇ν̃)2 + G − Y ,
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Comparison of NS and RANS:

Navier-Stokes system
describes (turbulent) fluid flow
no additional modelling is needed BUT

time/space scales are to small to be correctly
resolved in engineering computations!

Reynolds Averaged Navier-Stokes system

RANS desribes the mean fluid characteristics, the
fluctuating part is only modelled.
Thus: time/space scales can be correctly resolved
BUT
the turbulent stresses requires further modelling
(any) turbulence model is still inexact !!!
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Structure Model

elasticity equation

ρ
∂2ui

∂t2
−

∑
j

∂σij(u)

∂xj
= fi

u - structure deflection

special cases: linear stationary elasticity
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Flexibly Supported Airfoil

T

EO

k
hh

a

h

x'

k
aaL t( )

M t( )

U0

x

Airfoil motion equations

system ODEs

mḧ + Sαα̈ + Khhh = −L

Sαḧ + Iαα̈+ Kααα = M3
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h

x'

k
aaL t( )

M t( )

U0

x

Airfoil motion equations

system ODEs

mḧ + Sαα̈ cosα− Sαα̇
2 sinα+ Khhh = −L

Sαḧ cosα+ Iαα̈+ Kααα = M3
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Interface Conditions

elastic structure model

interface velocity wI

v = wI , u̇ = wI

equality of fluid/elastic forces

flexibly supported airfoil model

airfoil surface condition

v = wI

aerodynamical fluid forces L - lift and M - torsional
moment
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Goals - revisited

Model

fluid flow

flexibly supported airfoil

Goals

determine the safe region (critical velocity)

simulate post-critical regimes (nonlinear aeroelasticity)

how can we verify our results ?

compare numerical results to experimental data
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Sváček, P.

Outline

Introduction

Mathematical
Model

General Model

Simplifications

Interface
Conditions

Numerical
Approximation

Numerical
Results

Conclusions

Goals - revisited

Model

fluid flow

flexibly supported airfoil

Goals

determine the safe region (critical velocity)

simulate post-critical regimes (nonlinear aeroelasticity)

how can we verify our results ?

compare numerical results to experimental data



On reliability
of FEM in FSI
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Computations on Moving Meshes

How to approximat the time derivative ? AVI format
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How to approximate the time derivative?

Navier-Stokes system in ALE form

DA

Dt
v + (v −wg ) · ∇v +∇p − ν4v = 0

∇ · v = 0 in Ωt
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How to approximate the time derivative?

Arbitrary Lagrangian-Eulerian method

Define ALE mapping At

At : Ωref 7→ Ωt

Domain velocity (grid velocity)

w̃g (t,Y ) =
∂At(Y )

∂t

ALE derivative - time derivative on ALE trajectory

DA

Dt
f =

∂f

∂t
+ (wg · ∇)f

Navier-Stokes system in ALE form

DA

Dt
v + (v −wg ) · ∇v +∇p − ν4v = 0

∇ · v = 0 in Ωt
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Weak Formulation

The ALE derivative is approximated

DAv

Dt
≈ 3vn+1 − 4ṽn + ṽn−1

2∆t

Weak formulation: find vn+1 = v, p

Weak formulation

(
3v

2∆t
, ϕ

)
+

(
[(v −wg ) · ∇] v, ϕ

)
+ ν(∇v,∇ϕ)

−(p,∇T · ϕ) + (∇ · v, q) =

(
4ṽn − ṽn−1

2∆t
, ϕ

)
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Galerkin formulation

FEM gives unstable results?

Galerkin method is unstable → several sources of
instabilities

Babuška-Brezzi (inf-sup) condition needs to be satisfied

sup
vh∈Xh

(qh,∇ · vh)

‖vh‖1,2,Ω
≥ c‖qh‖0,2,Ω

very high Reynolds numbers → convection dominated
flows

Re loc
K =

h‖v‖K
ν

> 1
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Galerkin formulation

FEM gives unstable results?

Galerkin method is unstable → several sources of
instabilities

Babuška-Brezzi (inf-sup) condition needs to be satisfied

sup
vh∈Xh

(qh,∇ · vh)

‖vh‖1,2,Ω
≥ c‖qh‖0,2,Ω

very high Reynolds numbers → convection dominated
flows

Re loc
K =

h‖v‖K
ν

> 1

⇒ use Galerkin/Least-Squares stabilization
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Spatial discretization

Stabilization ψ = (w · ∇)ϕ+∇q

L(U,V ) =
∑
K

δK

(
3

2∆t
v − ν4v + (w · ∇) v +∇p, ψ

)
K

,

F(V ) =
∑
K

δK

(
4vn − vn−1

2∆t
, ψ

)
K

,

Stabilized problem

Galerkin terms, GALS stabilization, grad-div stabilization

a(U,V )+L(U,V )+
∑
K∈τh

τK

(
∇ · v,∇ · ϕ

)
= f (V )+F(V ).
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Other topics

solution of nonlinear problem (NS) - linearization

solution of linear problem (UMFPACK)

approximation of ODEs

interface conditions - coupling of fluid-structure models
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Boundary layer approximation

Re = 2 · 105, comparison with the analytical Blasius solution
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Approximation of Boundary Layer - Taylor Hood

laminar flow (Re = 2 · 105)

FE Dimension: 16683 x 2 + 4242 = 37608

Nodes: 4242

Elements: 8200
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Blasius solution - Taylor-Hood

laminar flow (Re = 2 · 105)

FE Dimension: 16683 x 2 + 4242 = 37608

Nodes: 4242 Elements: 8200

Can we improve that?
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Nodes: 4242 Elements: 8200

Can we improve that?
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Blasius solution - Taylor-Hood

laminar flow (Re = 2 · 105)

FE Dimension: 16683 x 2 + 4242 = 37608

Nodes: 4242 Elements: 8200

Can we improve that? anisotropic mesh adaptation, use of
higher order FEs
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Blasius solution - P3/P2 elements

laminar flow (Re = 2 · 105)

uniform p-distribution

FE Dimension: 4012 x 2 + 1809 = 9833

Nodes: 472

Elements: 866
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Blasius solution - P4/P3 elements

laminar flow (Re = 2 · 105)

FE Dimension: 2x13235 (Velocity) + 7483 (Pressure) =
33953

Nodes: 866, Elements: 1629
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Flow over NACA 632 − 415

Fluid velocity isolines, Re = 5 · 105, AVI format
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Flow over NACA 632 − 415

aerodynamical lift coefficient (time averaged values)

comparison with experimental data for NACA 632 − 415
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Flow over NACA 632 − 415

aerodynamical moment coefficient (time averaged values)

comparison with experimental data for NACA 632 − 415
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Prescribed vibrations of α, 30 Hz, amplitude 3,2,1
degrees.

0 0.02 0.04 0.06 0.08 0.1 0.12
−3

−2

−1

0

1

2

3

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

time [sec]

al
ph

a[
de

gr
ee

s]



On reliability
of FEM in FSI
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Prescribed vibrations of α, 30 Hz, amplitude 1
degree.
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Pressure Coefficient

What is pressure coefficient?

cp =
p − p0
1
2ρU

2
∞

for prescribed vibrations

α = α0 · sin(2πft)

the pressure at airfoil surface is expected to behave like

cp = cmean
p + c ′p sin(2πft) + c ′′p cos(2πft)

comparison with experimental data
Benetka, J. et al, Tech. report 3418/02, ARTI, 2002 ,
Triebstein, H., 1986., J. Aircraft 23.
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Stall Flutter Approximation

α = (10 + 10 · sin(2πft)),Re = 5000

Naudasher, E., Rockwell, D., Flow-Induced Vibrations, 1994
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Stall Flutter Approximation

α = (10 + 10 · sin(2πft)),Re = 5000

α = 10.859 α = 18.3407 α = 19.9988

α = 19.4553 α = 12.045 α = 8.06
Naudasher, E., Rockwell, D., Flow-Induced Vibrations, 1994
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Stall Flutter

Fluid velocity isolines, Re = 5 · 105 AVI(1) format
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Aeroelastic model - Turbulent Flow

flexibly supported airfoil NACA 0012

RANS + Spallart-Almaras turbulence model

NASTRAN computation with the STRIP model critical
speed U∞ = 37.7m/s

frequencies and damping comparison
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Aeroelastic model - Turbulent Flow

Solution of the coupled aeroelastic model (h,α), U = 5m/s
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Aeroelastic model - Turbulent Flow

Solution of the coupled aeroelastic model (h,α), U = 7.5m/s
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Aeroelastic model - Turbulent Flow

Solution of the coupled aeroelastic model (h,α), U = 10m/s
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Sváček, P.

Outline

Introduction

Mathematical
Model

Numerical
Approximation

Numerical
Results

Fluid Flow
Approximation

Fluid
Approximation
over Moving
Structure

Aeroelastic
Simulations

Conclusions

Aeroelastic model - Turbulent Flow

Solution of the coupled aeroelastic model (h,α), U = 12.5m/s
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Aeroelastic model - Turbulent Flow

Solution of the coupled aeroelastic model (h,α), U = 15m/s



On reliability
of FEM in FSI
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Aeroelastic model - Turbulent Flow

Solution of the coupled aeroelastic model (h,α), U = 17.5m/s
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Aeroelastic model - Turbulent Flow

Solution of the coupled aeroelastic model (h,α), U = 20m/s
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Aeroelastic model - Turbulent Flow

Solution of the coupled aeroelastic model (h,α), U = 22.5m/s
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Solution of the coupled aeroelastic model (h,α), U = 25m/s
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Aeroelastic model - Turbulent Flow

Solution of the coupled aeroelastic model (h,α), U = 27.5m/s
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Aeroelastic model - Turbulent Flow

Solution of the coupled aeroelastic model (h,α), U = 30m/s
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Aeroelastic model - Turbulent Flow

Solution of the coupled aeroelastic model (h,α), U = 32.5m/s



On reliability
of FEM in FSI
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Aeroelastic model - Turbulent Flow

Solution of the coupled aeroelastic model (h,α), U = 35m/s
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Solution of the coupled aeroelastic model (h,α), U = 36m/s



On reliability
of FEM in FSI
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Aeroelastic model - Turbulent Flow

U=37 m/s

velocity isolines, AVI format
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computations.

We must provide: careful mesh design, time step value, ...
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Can the grid motion “pollute” the solution?
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Can the grid motion “pollute” the solution?

AVI format Test Problem: constant fluid velocity v = (1, 0)
on rectangle.
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Use anallytical derivative of ALE mapping ...

wg =
∂x

∂t

Approximately 10 % error (!) AVI format
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Use finite difference formula ...

wg ≈
3x (n+1) − x(n) + x(n−1)

2∆t

Grid Motion Influence on Solution (finite difference
approximation of grid velocity)AVI format
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The ALE derivative approximation

use vn−1 - defined on Ωn−1

vn - defined on Ωn

and vn+1 - defined on Ωn+1

DAv

Dt
≈ 3vn+1 − 4ṽn + ṽn−1

2∆t

where ṽn and ṽn−1 lives on Ωn+1
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Spatial discretization

Stabilization ψ = (w · ∇)ϕ+∇q

L(U,V ) =
∑
K

δK

(
3

2τ
v − ν4v + (w · ∇) v +∇p, ψ

)
K

,

F(V ) =
∑
K

δK

(
4vn − vn−1

2τ
, ψ

)
K

,

Stabilized problem

Gelhard, T., Lube, G., Olshanskii, M. A., 2004. Stabilized
finite element schemes with BB-stable elements for
incompressible flows. Journal of Computational and
Applied Mathematics (accepted).

Gelhard, T., Lube, G., Olshanskii, M. A., 2004. Stabilized
finite element schemes with LBB-stable elements for
incompressible flows. Journal of Computational and
Applied Mathematics .
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