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Traditional approach to modeling physical systems

1. Model a physical phenomenon using a differential 
equation (or a system of differential equations) or a 
variational principle

2. Obtain the algebraic forms of the differential 
equation(s) or variational principle by forcing them 
into the mold of discrete time and space

3. In order to commit to algorithms, project real-valued 
variables onto finite computer words => round-off & 
truncation
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Traditional approach to modeling physical systems

2. Obtain the algebraic forms of the differential 
equation(s) or variational principle by forcing them 
into the mold of discrete time and space

Dow, J.O., A Unified Approach to the Finite Element Method and Error Analysis 
Procedures. Academic Press, New York (1998).

Babuska, I. and Strouboulis, T.. The Finite Element Method and its Reliability. 
Oxford Press, 2001.

Oden, J. T., I. Babuska, F. Nobile, Y. Feng, R. Tempone, (2005), Theory and 
methodology for estimation and control of errors due to modeling, approximation, 

and uncertainty. Comput. Methods Appl. Engrg., 194, 195-204.

Computer Methods in Applied Mechanics and Engineering, 195, Issues 4-6, 205-
480 (2006). Special issue on “Adaptive Modeling and Simulation”.

Peraire and co-workers => Certificates for PDEs (certified bounds on     
discretization errors).

Elliptic problems, limit theory of plasticity, J-integral

Sauer-Budge, A.M., Bonet, J., Huerta, A., and Peraire, J., Computing bounds for linear 
functionals of exact weak solutions to Poisson's equation, SIAM Journal on Numerical 

Analysis, 42, 4 1610-1630, (2004).

Xuan, Z.C., Parés, N. and Peraire, J., Computing upper and lower bounds for the J-integral 
in two-dimensional linear elasticity. Computer Meth. in Appl. Mech. and Engng., 195, 430-

443 (2006).
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1. Model a physical phenomenon using a differential 
equation (or a system of differential equations) or a 
variational principle

2. Obtain the algebraic forms of the differential 
equation(s) or variational principle by forcing them 
into the mold of discrete time and space

3. In order to commit to algorithms, project real-valued 
variables onto finite computer words => round-off & 
truncation

CA approach to modeling physical systems

Physical system (computer)

Physical System
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CA approach to modeling physical systems

?
Exact integration process
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Discrete Mechanics (Baez and Gilliam, 1994 & 1996)

• Time evolution proceeds in integer steps
• Configuration space is discrete
• Differential geometry => Algebraic geometry
• Euler-Lagrange Equation
• Noether theorem
• Symplectic techniques
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Outline

•Example of mechanical system
•Introduce imprecision using extended intervals
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Example of discrete mechanical system

•Configuration space = ring k of rational numbers
•Particle of mass m constrained to move on a line: q0, q1,..
•Algebra A of functions on k:

[ ] { }2 2 3
0 0 1 0 2 0 1 2 0 3, , , : ,...A k q q q q q qλ λ λ λ λ λ λ λ λ λ≅ = + + + + +

[ ] { }2 2 3
0 0 1 0 2 0 1 2 0 3, , , : ,...A k q q q q q qλ λ λ λ λ λ λ λ λ λ≅ = + + + + +

•Lagrangian

•Space of histories

[ ]0 ,..., TH k q q≅
•Lagrange equation

( ) ( )2
1

1,
2i i i ii iq q mq V q+= = −L L

[ ]1 2,A A k q q⊗ ≅ ( ) ( )2
1

1,
2i i i ii iq q mq V q+= = −L L 1ii i iq q q+= −

1 0i i i id d −+ =L L ( ) ( )1 'i i im q q V q−− = −
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Example of discrete mechanical system
[ ] { }2 2 3

0 0 1 0 2 0 1 2 0 3, , , : ,...A k q q q q q qλ λ λ λ λ λ λ λ λ λ≅ = + + + + +

 
i = 1 

 
i = 2 

 
i = 3 

 
i = 4 

 
i = 5 

 
i = 6 

 
i = 7 

 
i = 8 

 

m = 1
q0 = 8
q1 = 16 
V= ½sq2

s = 1
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Example of discrete mechanical system
[ ] { }2 2 3

0 0 1 0 2 0 1 2 0 3, , , : ,...A k q q q q q qλ λ λ λ λ λ λ λ λ λ≅ = + + + + +

m = 1
q0 = 8
q1 = 16 
V= ½sq2

s/m = 1/3

{8, 
10, 
56/3, 
136/9, 
176/27, 
-344/81, 
-3304/243, 
-13424/729, 
-37384/2187, 
-66104/6561, 
5936/19683, 
624616/59049, 
3069656/177147
…}
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Example of discrete mechanical system
[ ] { }2 2 3

0 0 1 0 2 0 1 2 0 3, , , : ,...A k q q q q q qλ λ λ λ λ λ λ λ λ λ≅ = + + + + +

100 time steps

(a)(a)

1,000 time steps

10,000 time steps
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Example of discrete mechanical system
[ ] { }2 2 3

0 0 1 0 2 0 1 2 0 3, , , : ,...A k q q q q q qλ λ λ λ λ λ λ λ λ λ≅ = + + + + +

(a)(a)

•Integer coordinates?
•All coordinates?

•Maximum and minimum coordinates:

100 steps: [-18.68289250959053, 18.682435719981747]

1,000 steps: [-18.68289250959053, 18.683060458305423 ]

10,000 steps: [- 18.683972612054987, 18.6839719940311 ]
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Discrete mechanical systems on interval algebra

•Configuration space = conditional ring D of ext. intervals
•Particle of mass m constrained to move on a line: q0, q1,..

[ ] { }2 2 3
0 0 1 0 2 0 1 2 0 3, , , : ,...A k q q q q q qλ λ λ λ λ λ λ λ λ λ≅ = + + + + +

•Lagrangian

•Lagrange equation

1 0i i i id d −+ =L L

( ) ( )
2.

1
1,
2i i i ii+ −

= = −q q mq V qL L

( ) 1 0i i i iDual d d −+ =L L

( ) ( )1_ ' 0i i i−− + =mq mq V q
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Discrete mechanical systems on interval algebra

•Newton’s law:

[ ] { }2 2 3
0 0 1 0 2 0 1 2 0 3, , , : ,...A k q q q q q qλ λ λ λ λ λ λ λ λ λ≅ = + + + + +

( ) ( ) ( ) ( ) ( )
( )
( )
( )

1 1

1
1

1
1

1
1

_ ' 0 _ _ ' _

_ _ ' _

_ ' _

_ _ '

i i i i i i

i i i

i i i

i i i

− −

−
−

−
−

−
−

− + = ⇔ = −

⇔ = −

⇔ − = −

⇔ − = −

mq mq V q mq mq V q

q q m V q

q q m V q

q q m V q
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Discrete mechanical systems on interval algebra

•Example:

[ ] { }2 2 3
0 0 1 0 2 0 1 2 0 3, , , : ,...A k q q q q q qλ λ λ λ λ λ λ λ λ λ≅ = + + + + +

0 [11,000, 11,100]=q

[ ]1 10,000, 11,000=q

( ) 2
1 1

1
2

=V q sq

s = [1/5000, 3/5500]

m = [1, 2]

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

97840
11

109989
10

23547324
3025

1099670011
100000

27741730507
4159375

10993400549989
1000000000

126999172635479
22876562500

109890016499230011
10000000000000

557422553635612563
125821093750000

1098350384969200989989
100000000000000000

2288250850107591605311
692016015625000000

10976907699076049498790011
1000000000000000000000

8301862351155904852855067
3806088085937500000000

109692138576901814927401429989
10000000000000000000000000

22075992059906839606189421799
20933484472656250000000000

1096042309491854446854100098350011
100000000000000000000000000000

− 8361651439670606649600705226397
115134164599609375000000000000

10950536289837415589895004868001869989
1000000000000000000000000000000000

− 759751840694239559412888964794437809
633237905297851562500000000000000

109395544311273029696900192520168297910011
10000000000000000000000000000000000000

− 8102051036064516583713118612745923335573
3482808479138183593750000000000000000

1092747861697407761918806463410658791002309989
100000000000000000000000000000000000000000

− 66115762062600742198853274199335175199046281
19155446635260009765625000000000000000000

10914310054959154860924191209732935370254097470011
1000000000000000000000000000000000000000000000

− 481987991561468735303467618334524740762828702157
105354956493930053710937500000000000000000000

109000500619387361871742253662383095369480696402749989
10000000000000000000000000000000000000000000000000

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

Used Popva’s algorithm (2005) to 
eliminate dependency in flow 
calculation
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Discrete mechanical systems on interval algebra
[ ] { }2 2 3

0 0 1 0 2 0 1 2 0 3, , , : ,...A k q q q q q qλ λ λ λ λ λ λ λ λ λ≅ = + + + + +

 
i=1 

 
i=20 

 
i=40 

 
i=60 

 
i=80 

 
i=140 

 
i=160 

 
i=180 

 
i=200 
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Conclusions

•It may be impossible to determine a priori the evolution of 
even the simplest discrete mechanical system (sit down 
and let it evolve)

•When the system takes values on the set of extended 
intervals: 

1) Introduce “Dual” in Lagrange equation.

2) Exact bounds can be calculated for i-th time step      
(monotonicity, Popova 2005)

3) Taylor models for flow of non-monotonic time 
evolutions?
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Thanks

Evgenija D. Popova (Institute of Mathematics and 
Informatics, Bulgarian Academy of Sciences)


