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Uncertainty in mechanics

Figure: Material properties and geometrical parameters of damaged
structures
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Uncertainty in mechanics

Figure: Material and geometrical properties of rocks
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Uncertainty in mechanics

Figure: Material and geometrical properties of soil

4/26



Random variables
I Definition X : Ω 3 ω → X (ω) ∈ R

I Probability density function P{a ≤ X ≤ b} =
b∫
a

f (x)dx

Figure: Probability that P{a ≤ X ≤ b} =
b∫
a

f (x)dx
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Distributed load as a random variable
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Figure: Beam with random distributed load
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Distributed load as a random field
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Figure: Beam with random distributed load (random field)

At this moment interval methods are not able to take into account
more complicated types of dependency.
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Main problem:
How to get probabilistic characteristics (e.g. µ, Σ)?

Figure: Concrete beams with cracks
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Limitations of probabilistic methods
Elishakoff I., Possible Limitations of Probabilistic Methods in
Engineering, ASME. Applied Mechanics Reviews, Vol.53, pp 19-36,
2000

I Lack of probabilistic data (because there is no time and
money for collecting these data).

I Controversy related to likelihood interpretation of reliability
and safety.

I Some researchers claim that probability doesn’t exist
(pure random object doesn’t exist).

I In many cases the problems are unique (particularly civil
engineering applications) and it is hard to get reliable
probabilistic data.

I In some cases data are unavailable because it is very hard to
get the information about the values of particular parameter
(e.g. material parameters of soil 2000 m under ground level).

I etc.
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Safety factors

I Semi-probabilistic methods. Reliability index

β = −Φ−1(Pf ) (1)

Calibration of partial safety factors

min
γ

W (γ, β) (2)

where W is some penalty function.

I Non-probabilistic definition

γ =
xmax

xdesign
(3)

where xdesign is a design value, xmax is characteristic value.
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Simplest case of worst case analysis: interval parameters

I p = [p−, p+] or p = [p−1 , p+
1 ]× [p−2 , p+

2 ]× ...× [p−m, p+
m].

I Solution set of equations with interval parameters

u(p) = {u : F (u, p) = Q(p), p ∈ p} (4)

or
¤u(p) = ¤{u : F (u, p) = Q(p), p ∈ p} (5)

where ¤u(p) is the smallest set which contain the set u(p).
Above definition us valid also in the case of differential and
integral equation.

I In particular case we have system of linear equation with
interval parameters.

¤u(p) = ¤{u : K (p)u = Q(p), p ∈ p} (6)
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Convex model of uncertainty

I Ben-Haim, Y., and Elishakoff, I. (1990). Convex models of
uncertainty in applied mechanics, Elsevier, New York.

I Ellipsoidal uncertainty

p̃ =

{
(p1, p2) :

p2
1

a2
+

p2
2

b2
6 1

}
(7)
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Figure: Ellipsoidal uncertainty
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Solution of the interval equations using endpoint
combination method

I Let us consider interval equation

f (u, p) = 0, or equivalently u = u(p) (8)

I Additionally lets assume that u = u(p) is monotone, then

u = min{u(p), u(p)}, u = max{u(p), u(p)} (9)

In multidimensional case in order to find the solution we have
to solve 2m (where m is a number of uncertain parameters).

u = min{u(p±1 , p±2 , ..., p±
m

)} (10)

u = max{u(p±1 , p±2 , ..., p±m)} (11)
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Taylor expansion method (first order)

I Let us consider interval equation

f (u, p) = 0, or equivalently u = u(p) (12)

I Function u = u(p) can be approximated using Taylor
expansion

u(p) = u(p0) +
∑

i

∂u(p0)

∂pi
(pi − pi0) (13)

u = u(p0) +
∑

i

∣∣∣∣
∂u(p0)

∂pi

∣∣∣∣ (p
i
− pi0) (14)

u = u(p0) +
∑

i

∣∣∣∣
∂u(p0)

∂pi

∣∣∣∣ (pi − pi0) (15)
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Extreme values of monotone function

p

( )u u p=u
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du
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>

Figure: Extreme values of a monotone function u = u(p) can be
calculated by using upper and lower bounds of the parameters i.e.
p−, p+ ∈ R.
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Sensitivity analysis

u = u(p), p ∈ [p, p] (16)

du(p)

dp
> 0, for p ∈ [p, p] (17)

u = u(p), u = u(p) (18)

du(p)

dp
< 0, for p ∈ [p, p] (19)

u = u(p), u = u(p) (20)
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Interval functional parameters

I Uncertain Young modulus

E (x) ∈ E(x) = [E−(x),E+(x)] (21)

x

( )E E x
-=

( )E E x
+=

E

Figure: Set-valued Young modulus
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Solution of equation with functional parameters

u(p) = {u : F (u, p) = 0, p(x) ∈ p(x)}, (22)

u(p) = ¤u(p) = ¤{u : F (u, p) = 0, p(x) ∈ p(x)}. (23)
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General concept of monotonicity

A map T : X → Y is monotone if (X , >) is a partially ordered set
and x , y ∈ X , x > y ⇒ T (x) > T (y).

A partial order is a binary relation ”6” over a set P which is
reflexive, antisymmetric, and transitive, i.e., for all a, b, and c in P,
we have that:
a 6 a (reflexivity);
if a 6 b and b 6 a then a = b (antisymmetry);
if a 6 b and b 6 c then a 6 c (transitivity).
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Sensitivity analysis: functional parameters case

u(p0 + δp)− u(p0) ≈ δu(p0, δp) (24)

Algorithm 1 General sensitivity analysis with functional
parameters

1. if δu(p, δp) > 0 then pmin = p, pmax = p.

2. if δu(p, δp) < 0 then pmin = p, pmax = p.

3. u = u(pmin), u = u(pmax).
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Sensitivity analysis: functional parameters case

u(p) =

∫

Ω

L(x , p(x))dx (25)

δu(p0, δp) =

∫

Ω

δu(p)

δp(x)
δp(x)dx =

∫

Ω

∂L(x , p(x))

∂p(x)
δp(x)dx (26)

Theorem If δu(p)
δp(x) > 0 for p ∈ [p, p] ⊂ X , then the function

u = u(p) is monotone in the interval p.

Algorithm 2 Sensitivity analysis based on functional derivative
1. if δu

δp(x) > 0 then pmin = p, pmax = p.

2. if δu
δp(x) < 0 then pmin = p, pmax = p.

3. u = u(pmin), u = u(pmax).
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Non-monotone case, continuous gradient method

u(p0 + δp)− u(p0) ≈ δu(p0, δp) =

∫

Ω

δu(p)

δp(x)
δp(x)dx > 0 (27)

δpu(x) = λ(x)
δu(p0)

δp(x)
(28)

δpl(x) = −λ(x)
δu(p0)

δp(x)
(29)

u(p0 + δpu) > u(p0) (30)

u(p0 + δpl) 6 u(p0) (31)
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Non-monotone case, continuous gradient method

Algorithm 3 Calculation of upper bound u
1. p(x) = p0(x)
2. choose the function λ(x)

3. δpu(x) = λ(x) δu(p)
δp(x)

4. pold(x) = p(x)
5. p(x) := p(x) + δpu(x)
6. if p(x) > p(x) then p(x) = p(x)
7. if p(x) < p(x) then p(x = p(x)
8. if ‖pold − p‖ > ε then goto step 2
9. u = u(p)
10. stop
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Sensitivity with respect of changes of the region of
integration

u(Ω) =

∫

Ω

L(x)dx (32)

u(Ω+∆Ω)−u(Ω) =

∫

Ω+∆Ω

L(x)dx−
∫

Ω

L(x)dx =

∫

∆Ω

L(x)dx (33)

∫

∆Ω

L(x)dx = |∆Ω|L(x∗) (34)

u(Ω + ∆Ω)− u(Ω)

|∆Ω| = L(x∗) (35)

δu

δΩ(x)
= lim
|∆Ω(x)|→0

u(Ω + ∆Ω(x))− u(Ω)

|∆Ω(x)| = L(x). (36)
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Sensitivity with respect of changes of the region of
integration

The inclusion ⊂ can be treat as partial order relation >. Because
of that it is possible to take into account ”set intervals”

[Ω,Ω] = {Ω : Ω ⊂ Ω ⊂ Ω}. (37)

Algorithm 4 Sensitivity analysis based on functional derivative
1. if δu

δΩ(x) > 0 for x ∈ Ω− Ω then Ωmax = Ω, Ωmin = Ω.

2. if δu
δΩ(x) < 0 for x ∈ Ω− Ω then Ωmax = Ω, Ωmin = Ω.

3. u = u(Ωmin), u = u(Ωmax).
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Conclusions

I Using functional derivative it is possible to find solution of
equation with uncertain functional parameters.

I The method can be applied to solution of large class of
engineering problems with uncertain filed.

I The method can be applied to solution of linear and nonlinear
problems of computational mechanics with uncertain filed.

I The algorithm of sensitivity analysis method method can be
parallel.
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