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I
1 Introduction B & NUS

General situation National ey

of Singapore

The engineer's endeavor

e numerical modeling — structure and environment

mm) design and prognoses — system behavior, safety, robustness,
economic aspects, aesthetics

» close to reality
» numerically efficient

Deterministic methods

e deterministic e deterministic ﬁ :
structural parameters computational models Reality

Imprecision ? Variation ? Ambiguity ? Vagueness ?

!

Problem of uncertainty and its consequences
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1 Introduction N US
%

Uncertainty crangaons

of Singapore

Examples:

e Mechanical behavior of novel materials

= Nanotubes as micro reinforcement Modeling on Micro

. . 4
» Fiber reinforced concrete Meso and Macro scale
» Textile reinforced concrete

Distribution and orientation of reinforcement material ?
Interaction ?  Failure modes ? Long-term behavior ?

e Risk and hazard analysis — earthquakes and tsunamis
= Hazard potential and consequences of Sumatra earthquakes

Generation 7 Propagation ? Local effects for Singapore ?

e Extreme environmental conditions — hurricanes and ice loads
= reliability and life-time assessment of offshore structures
Frequency 7 Location ? Direction ? Strength ? Effects ?
Damage and residual safety ?
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1 Introduction = NUS
Uncertainty 95

Resumeé
o different engineering fields

e common problem: uncertainty / lack of information

inconsistency of data / information:
stochastic and non-stochastic characteristics simultaneously

» small samples

» imprecise sample elements

» changing environmental conditions
» linguistic assessments

» experience, expert knowledge

mmm) appropriate mathematical modeling and quantification
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e
2 Mathematical models B & NUS

Modeling of uncertainty National Unkerdty

of Singapore

Probabilistic uncertainty models

e traditional stochastic models
e subjective probabilities and BAYES'ian approach

Non-probabilistic uncertainty models

e intervals
e convex models
o fuzzy sets

Mixed probabilistic/non-probabilistic uncertainty models

interval probabilities

sets of probabilities / p-box approach
random sets

fuzzy random quantities / fuzzy probabilities
evidence theory

imprecise probabilities

mm) appropriate model choice in each the particular case
depending on the available information

mm) application of different uncertainty models in parallel
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2 Mathematical models

Sources of imprecision

e imprecision of measuring devices

//
e
5.15 ... 5.35

e imprecise measuring points
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e linguistic assessments

medium

| | —>
0 10 30 50
Bp [N/mm?2]

e expert assessment / experience

plausible range
X

| >

1
measurement / observation
under dubious conditions
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e
2 Mathematical models B & NUS

Single imprecise value ,fmwmmw
Fuzzy set
« X = {(X,M(X))\ X € X}, w(x) 20 vxeX

Numerical representation
o a-level set X ={xeX |px)za |

membership X = {(X,,n(X,))} o-discretization
u(x) A

1.0 —
membership function u(x)

0.0
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e
2 Mathematical models B & NUS

Sample of imprecise values crse

of Singapore
Fuzzy random quantity
e fuzzy result of the mapping Q — F(1")

random elementary events

n(x) A oeO
1.0 -
fuzzy numbers
o =
0.0 L e X(@)\.w.., A X(wp) | X\ T

“a
a
L]
L]

]
L]
.....
]
"y
L

]

e original X,  T—/ TN
» real-valued random quantity X~ — e
that is completely enclosedinx — —

e representation ofx XeX=["
» fuzzy set of all possible originals X; realizations

e o-discretization mmsp random o-level sets X, @i
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2 Mathematical models

Sample of imprecise values

Fuzzy probability

e evaluation of all random a-level sets X,

° 5(AI) = {(Pa(éu)l H(PU(AI)))}

¢ Pa(éu) :[Pal(éi); Par(Ai)] /

P, I(Ai) =P(X, c A)

Michael Beer

w(P.(A)) = a ¥ o e (0; 1]

Poc r(Ai) = P(X(x méi o ®)

NUS

National Unhersity
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e
2 Mathematical models B & NUS

Sample of imprecise values

Fuzzy probability distribution function I;(x)

e bunch of the Fy(x) _
of the originals X; of X

» a-discretization

> F(x) = {(F.x), u(F,()))}

» F.(x)=[F, (x), F,.(X)],
n(F,(x))=a Vae(0, 1]

2Ya

» F (X) =1-max P(X.
J

» F_(X) = max P{X-
J ,

E(x) with fuzzy parameters and fuzzy functional type
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3 Quantification techniques — NUS
Quantification of uncertainty ,fm;,;:mmw

General concept

e exploitation of statistical information
e realistic consideration of imprecision
e N0 Mixing between statistical information and imprecision

Typical cases in engineering

e small sample size, expert knowledge
» weak statistical information from estimations and tests
mm) utilization of statistical imprecision
in the specification of fuzzy parameters and fuzzy distribution types

e imprecise sample elements
» statistics with fuzzy quantities

mm) utilization of fuzzy arithmetic in statistical estimations and tests

e inconsistent environmental conditions, expert knowledge
» critical conditions for statistical estimations and tests
mm) separation of fuzziness and randomness by constructing groups
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3 Quantification techniques B & NUS
Example | E g

Small sample size, expert knowledge

e measurement of the compressive strength of concrete
» 20 sample elements for x = f. [N/mm?2]

28.3, 26.8, 31.5, 35.3, 35.2, 26.3, 29.8, 23.1, 27.6, 20.2
30.7, 29.2, 25.2, 25.7, 34.6, 34.2, 28.9, 24.8, 19.2, 22.8

e expert knowledge
» distribution type
= normal distribution
» choice of estimator
= sample mean for my
» sample variance for 0,2
» construction of confidence intervals (type and level)
= both-sided
= levels: y = 0.50, 0.75, 0.90, 0.99
» assignment of membership degrees to confidence levels
= point estimation — py = 1.0
»y=050-pu=0.75, y=0.75-p=0.50
y=0.75-pu=0.25, y=0.99 -y =0.00
» subsequent modification of the initial draft of the membership functions
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3 Quantification techniques B & NUS
Example | E g

Small sample size, expert knowledge

e statistical estimation

confidence expected value standard deviation
level y my [N/mm?2] Oy [N/mm?2]
point estimation - 27.97 4.75
interval 0.50 [27.24, 28.70] [4.35, 5.43]
estimation 0.75 [26.71, 29.23] [4.05, 5.92]
0.90 [26.13, 29.81] [3.77, 6.52]
0.99 [24.93, 31.01] [3.34, 7.92]
e construction of membership functions
H(mMy) 4 H(oy) 4
1.00 + 1.00
0.75 + r'qu 0.75 + EX
0.50 + 0.50 +
0.25 T 0.25
0.00 - / N - 0.00 L4 N
24.93 27.97 31.01 my [N/mm?2] 24.93 27.97 31.01 o, [N/mm?2]
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3 Quantification techniques B & NUS

National Unhersity
of Singapore

Example 11

Imprecise sample elements

e measurement of the compressive strength of concrete
» 20 sample elements for x = f. [N/mm?2]
= imprecision due to individual care and readings in the tests
= measurements modeled with fuzzy triangular numbers

<26.3, 28.3, 30.3>
<33.3, 35.3, 37.3>
<27.8, 29.8, 31.8>

<23.2, 25.2,27.2>

<24.8, 26.8, 28.8>
<33.2, 35.2, 37.2>
<21.1, 23.1, 25.1>

<23.7, 25.7, 27.7>

<29.5, 31.5, 33.5>,
<24.3, 26.3, 28.3>,
<25.6, 27.6, 29.6>,
<27.2,29.2, 31.2>,
<32.6, 34.6, 36.6>,

<28.7, 30.7, 32.7>

<32.2, 34.2, 36.2>
<17.2,19.2, 21.2>

e statistical evaluation
» distribution type: normal distribution (expert knowledge)
» application of estimators to fuzzy sample elements

<26.9, 28.9, 30.9>
<20.8, 22.8, 24.8>

<18.2, 20.2, 22.2>
: <22.8, 24.8, 26.8>,

~ lag T _ 1 | oy _1(“ N)z} interaction
X=n&" >x n—1h(x‘) n ENX' between
X= (XX ) eX=(X,...%,) = (x,5,)e(X,S)) x and S,
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3 Quantification techniques B8 & NUS
Example 11 E g

Imprecise sample elements

e numerical evaluation of statistical estimations
Sx  extreme parameter values

Soc=0 ré— F(X)A ________
Sy +—0 —— —— ~ ’;? —— p = 0, interaction
-T F(X) between X and s,
Se=01 + — —— negligence
S ! X of interaction
A —— -+ —>» 0.0 >
Xo=0 1 Xo=1 Xa=0r X
e construction of membership functions from extreme values for all a-levels
H(my) M(Oy)
1.00 - 1.00
0.75 — 0.75
0.50 - 0.50
0.25 - 0.25
.00_ | 0.00 ———
0.00 3.22 3.954.75 5.63 6.54

25.97 27.97 29.97
my [N/mm?2] Ox [N/mm?2] slide 16 of 25
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3 Quantification techniques BE & NUS
I 1 National Unlversity
Fuzzy analysis ,,fs.m
Xy N N N N X,
fuzzy A x=(., % ...) 2D=(.., Py ---) A fuzzy N
sample element X, sample element X,
X (04
mapping |*2 € X2, >2< o=
model ¢ )
| X2,0L| |
¢ : 1(X2)
j T I >
0.0 a 1.0

generally applicable
numerical solution:
modified evolution strategy

fuzzy parameter p;
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3 Quantification techniques —7 NUS
Example 111 95 s

Inconsistent environmental conditions, expert knowledge

e measurement of the compressive strength of concrete
» 620 sample elements for x = f. [N/mm?2]
» sample generation under varying environmental conditions
= different manufacturers
« different aggregates / additives (different suppliers)
= different hardening conditions (temperature, humidity)
= different motivation of personnel

e expert knowledge
» classify sample elements with respect to their attributes (conditions)
» determine groups of sample elements with same attributes

e quantification options
» parametric quantification
= distribution assumption from expert knowledge
» non-parametric quantification
= use of empirical distribution functions
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3 Quantification techniques —7 NUS
Example 111 95 s

Inconsistent environmental conditions, expert knowledge

e option a) — parametric quantification
» distribution type for each group
= normal distribution
» choice of estimator and point / interval estimation for each group
= point estimation
= sample mean for my
= sample variance for 0,2

group sample my Oy group sample my Oy
number size [N/mm=2] [N/mm?2] number size [N/mm=2] [N/mm?2]
1 54 27.3 5.3 7 55 26.4 5.0
2 48 26.6 4.9 8 47 30.1 4
3 42 29.2 4.2 9 64 28.3 5.9
4 38 31.4 3.8 10 53 27.9 3.8
5 44 28.3 5.6 11 75 29.6 6.3
6 48 29.4 3.2 12 52 27.8 4.7
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of Singapore

3 Quantification techniques B & NUS

Example 111 et ke

Inconsistent environmental conditions, expert knowledge

e option a) — parametric quantification
» histograms for parameters for all groups
» construction of membership functions for the parameters

in AN » assessment of interaction
4 + /\ 4 - /7\; b my [N/mm?2]
SN 3T 7l v 32.00 |
> L > | ARE / . \
! \ / )
1+ \. 1 4 A \ )
i 1/ ‘N Mx | // \\ Oﬁ
H(my) A H(oy) 4
1.00 1.00
0.75 + s 0.75+ Oy
0.50 + 0.50 + 25.43 -
0.25 + 0.25+
Oy [N/mm?2
00 A/ = 0.00- ‘ - O o [N/mmZ]
25.43 27.91 32.00 2.79 4.88 6.96 2.79 6.96
my [N/mm?2] Oy [N/mm?2]
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3 Quantification techniques

Example 111

BB &

NUS
%

National Unhersity
of Singapore

Inconsistent environmental conditions, expert knowledge

e option b) — non-parametric quantification
» construction of empirical distributions F#(x) for each group i
» histograms for Fe(x) for selected values x for all groups
» construction of membership functions for the Fe(x) for all selected x

Ny x =20 N/mm?
8
4 1.
\ ...... :
\ ........ .
LN
0 0.05 0.10 Fe(x)
H(Fe(x)) &
1.0 1
Fe(x
0.5 .
0.0 g
0  0.113 Fe(x)

Michael Beer

Ny x =28 N/mm? N4 x = 36 N/mm?2
4 4 - 8
/\
2 N
4 A Lo
27 / ..... \\ 4 — \l
"""" . \ P
0 /1‘ A\ Oi/r|>
0 0.2 0.4 0.6 0.8 F&(x) 0.8 0.9 1.0 Fe(x)
H(Fe(x)) 4 M(Fe(x)) A
1.0 + 1.0 +
Fe(x) 1 ~
0.5+ 0.5+ Fe(x)
0.0 — e 0.0 -
0.128 0.557 0.750 Fe(x) 0.742 0.958 1.0 Fe(x)
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3 Quantification techniques —7 NUS
Example 111 95 s

Inconsistent environmental conditions, expert knowledge

e option b) — non-parametric quantification
» determination of bounding distributions F_(x) and F_ (x) for all a-levels
= assumption of compound distribution — normal / logarithmic normal

F(x)=3-F°(x)+(1-3)-F*° (x)
= least squares algorithm with bounding condition F_,(x) < Fe(x) < F_ (X)

H(F(X)) 4

/I my = < 23.30, 27.66, 34.29 > N/mm?2
0.5 ———————— L Oy = < 4.34, 4.34, 4.81 > N/mm?2
2 = < 0.00, 0.00, 1.00 >

0.0 =Y AN | . ‘ -
0 23.30 27.66 34.29 60 x [N/mm?2]
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4 Numerical processing and result interpretation B8 & NUS
Fuzzy stochastic structural analysis ,,f"*“:.;:m"-""v

{x(8, t), X(8, ), X(8, t), X(0, )} > {Z(8, t), PLt)}

deterministic

parameters random
quantities
fuzzy
quantities fuzzy random
quantities

e depending on temporal and spatial coordinates

Numerical algorithm

coupling of ARBITRARY algorithms for

e fuzzy analysis

e deterministic structural analysis

e stochastic structural analysis or safety assessment

~ worst and best case results in terms of probability.
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4 Numerical processing and result interpretation B @ NUS
Fuzzy stochastic structural analysis ,f"*"':.;:m"-“"v

Capabilities and performance features

e vague and imprecise statistical information, expert knowledge

e generally applicable,
coupling of arbitrary algorithms for
fuzzy analysis, deterministic structural analysis, and stochastic analysis

e simultaneous processing of
random quantities, fuzzy quantities and fuzzy random quantities

e numerical effort < cost(stochastic analysis) x cost(fuzzy analysis)
e applicable in combination with response surface approximations

e results reflect the uncertainty of distribution assumptions
e direct determination of worst and best case results in terms of probability

e qualitative information on sensitivities,
in particular, with respect to the distribution assumptions
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Evaluation of Inconsistent Engineering data BE & NUS
Resumé 95

Comprehensive evaluation of uncertainty

e high degree of flexibility in uncertainty quantification

» fuzzy random quantities / fuzzy probabilities
= combination of traditional statistics with interval and fuzzy methods
= appropriate uncertainty modeling in the particular situation
= inclusion of subjective assessments

e high degree of generality in uncertainty processing
» processing of various uncertain quantities simultaneously
= stochastic simulation
= fuzzy analysis
= fuzzy stochastic analysis
m=) adequate consideration of uncertainty

in structural analysis, safety assessment and design

mm) complete reflection of the uncertainty
in the computational results

mm) worst case analysis in terms of probability
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