Propagating Uncertainties in Modeling Nonlinear Dynamic Systems

Joshua A. Enszer,¹ Youdong Lin,¹ Scott Ferson,² George F. Corliss,³ Mark A. Stadtherr¹

¹Department of Chemical and Biomolecular Engineering University of Notre Dame, Notre Dame, IN 46556, USA ²Applied Biomathematics Setauket, NY 11733, USA

³Department of Electrical and Computer Engineering Marquette University, Milwaukee, WI 53201, USA

Overview

- Problem Statement
- Representations of Uncertainty
 - Intervals and Taylor Models
 - Cumulative Probability Functions and P-boxes
- Solution Procedure
- Examples
 - Lotka-Volterra Model
 - Microbial Bioreactor with Haldane Kinetics
 - Three-State Bioreactor
- Concluding Remarks

A Motivating Problem: Lotka-Volterra Model

 Simulate a simple predator-prey model with the ODE system with uncertainty in parameters

$$\frac{dx_1}{dt} = \theta_1 x_1 (1 - x_2)$$

$$\frac{dx_2}{dt} = \theta_2 x_2 (x_1 - 1)$$

$$\frac{dx_2}{dt} = \theta_2 x_2 (x_1 - 1)$$

over the interval t = [0, 10]

- The variables x represent the biomasses of the prey and predator
- The parameters θ affect the growth and death of each species
- The distribution of uncertainties in θ_1 and θ_2 is not entirely unknown

• We consider the general ODE initial value problem

$$y'(t) = f(y, \theta), \quad y(t_0) = y_0 \in Y_0, \quad \theta \in \Theta,$$

where at least one of the initial conditions on state variables y or one of the time-invariant parameters θ is uncertain (contained in Y_0 and/or Θ)

• We consider the general ODE initial value problem

$$y'(t) = f(y, \theta), \quad y(t_0) = y_0 \in Y_0, \quad \theta \in \Theta,$$

where at least one of the initial conditions on state variables y or one of the time-invariant parameters θ is uncertain (contained in Y_0 and/or Θ)

 There may be information about the distribution of this uncertainty that can be represented by a p-box

We consider the general ODE initial value problem

$$y'(t) = f(y, \theta), \quad y(t_0) = y_0 \in Y_0, \quad \theta \in \Theta,$$

where at least one of the initial conditions on state variables y or one of the time-invariant parameters θ is uncertain (contained in Y_0 and/or Θ)

- There may be information about the distribution of this uncertainty that can be represented by a p-box
- We wish to obtain two items of interest
 - Guaranteed enclosure of solution across all times of interest
 - Ability to see p-box enclosure of state variables y at any time of interest

We consider the general ODE initial value problem

$$y'(t) = f(y, \theta), \quad y(t_0) = y_0 \in Y_0, \quad \theta \in \Theta,$$

where at least one of the initial conditions on state variables y or one of the time-invariant parameters θ is uncertain (contained in Y_0 and/or Θ)

- There may be information about the distribution of this uncertainty that can be represented by a p-box
- We wish to obtain two items of interest
 - Guaranteed enclosure of solution across all times of interest
 - Ability to see p-box enclosure of state variables y at any time of interest
- In short, we wish to propagate all knowledge of uncertainty through a dynamic model

Representation of Uncertainty: Intervals

- The most basic way to represent uncertainty in a value is to declare its lower and upper bound
- An real interval is just that, a segment of the real number line $X = [a,b] = \{x \in \mathbb{R} \mid a \le x \le b\}$
- An interval vector $\boldsymbol{X} = [X_1, X_2, \dots X_n]^T$ can be thought of as an n-dimensional rectangle
- We can define basic interval arithmetic using set notation:

$$X \text{ op } Y = \{x \text{ op } y \mid x \in X, y \in Y\}$$

• We can define other elementary interval functions (e.g., $\exp(X)$, $\sin(X)$)

Representation of Uncertainty: Intervals

• An interval extension F(X) encloses f(x) for every $x \in X$:

$$F(X) \supseteq \{f(x) \mid x \in X\}$$

- If the function calls an interval-valued variable more than once, direct substitution may lead to overestimation (the "dependency" problem)
- If the function range is not interval-shaped, the interval enclosure will include the interval as well as other values (the "wrapping effect")
- Repeated applications of such overestimations can quickly lead to the loss of any meaningful interval enclosure

ullet A Taylor model $T_f=(p_f,R_f)$ may be used to enclose f(x) over X where p_f is a qth order Taylor polynomial and R_f is an interval remainder bound

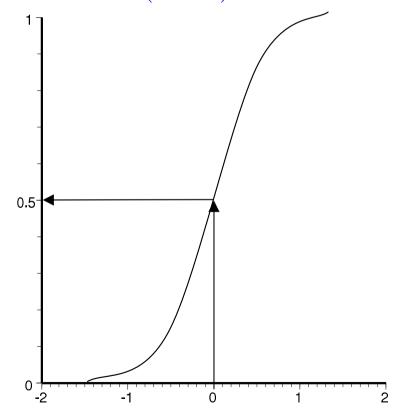
- ullet A Taylor model $T_f=(p_f,R_f)$ may be used to enclose f(x) over X where p_f is a qth order Taylor polynomial and R_f is an interval remainder bound
- One way to obtain T_f is directly from Taylor's theorem: p_f is a truncated Taylor series and R_f is an interval bound on the remainder term

- ullet A Taylor model $T_f=(p_f,R_f)$ may be used to enclose f(x) over X where p_f is a qth order Taylor polynomial and R_f is an interval remainder bound
- ullet One way to obtain T_f is directly from Taylor's theorem: p_f is a truncated Taylor series and R_f is an interval bound on the remainder term
- Another way is to obtain them from other Taylor models and operations (Makino and Berz, 1996)
 - Beginning with Taylor models of simple functions (e.g., constant, identity)
 and using TM operations, one we can compute the TM of a complicated
 function

- ullet A Taylor model $T_f=(p_f,R_f)$ may be used to enclose f(x) over X where p_f is a qth order Taylor polynomial and R_f is an interval remainder bound
- ullet One way to obtain T_f is directly from Taylor's theorem: p_f is a truncated Taylor series and R_f is an interval bound on the remainder term
- Another way is to obtain them from other Taylor models and operations (Makino and Berz, 1996)
 - Beginning with Taylor models of simple functions (e.g., constant, identity)
 and using TM operations, one we can compute the TM of a complicated
 function
- Compared to other methods, the Taylor model often provides sharper bounds for modest and more complicated functions

Representation of Uncertainty: CDF's

- \bullet For a quantity x , the cumulative distribution function (CDF) F(z) gives the probability that $x \leq z$
- ullet Example: in the CDF below, $P(x \leq 0) = 0.5$



• A probability box (p-box) bounds a set of probability distributions, much like an interval bounds a set of real numbers

- A probability box (p-box) bounds a set of probability distributions, much like an interval bounds a set of real numbers
- ullet A p-box is the set of all CDFs enclosed by two bounding functions F(z) and G(z):

$$(F,G) = \{H(z) \mid F(z) \ge H(z) \ge G(z) \quad \forall z \in \mathbb{R}\}\$$

- A probability box (p-box) bounds a set of probability distributions, much like an interval bounds a set of real numbers
- ullet A p-box is the set of all CDFs enclosed by two bounding functions F(z) and G(z):

$$(F,G) = \{H(z) \mid F(z) \ge H(z) \ge G(z) \quad \forall z \in \mathbb{R}\}$$

- P-boxes may be formulated from
 - Known distributions with uncertain parameters (e.g., mean, standard deviation)
 - Any bounds consistent with available information

- A probability box (p-box) bounds a set of probability distributions, much like an interval bounds a set of real numbers
- ullet A p-box is the set of all CDFs enclosed by two bounding functions F(z) and G(z):

$$(F,G) = \{H(z) \mid F(z) \ge H(z) \ge G(z) \quad \forall z \in \mathbb{R}\}$$

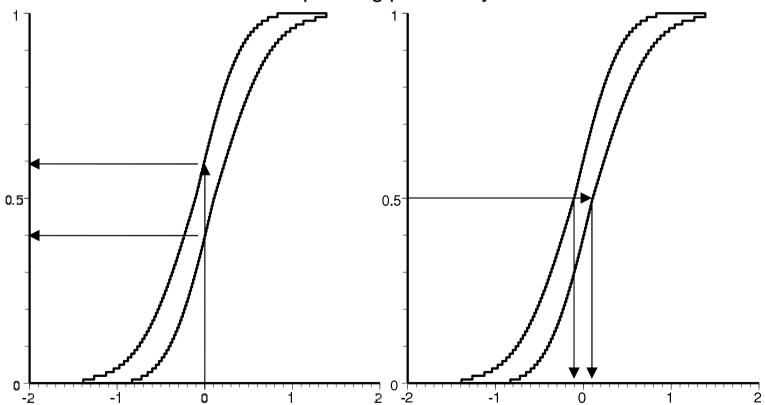
- P-boxes may be formulated from
 - Known distributions with uncertain parameters (e.g., mean, standard deviation)
 - Any bounds consistent with available information
- Arithmetic operations can be defined in a manner analogous to intervals

- A probability box (p-box) bounds a set of probability distributions, much like an interval bounds a set of real numbers
- ullet A p-box is the set of all CDFs enclosed by two bounding functions F(z) and G(z):

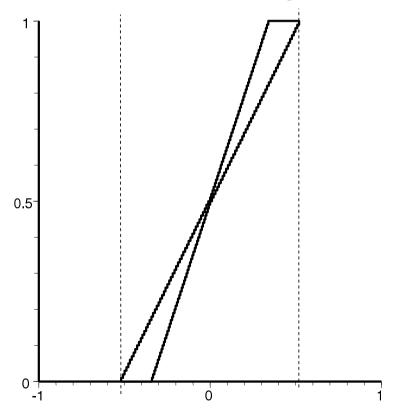
$$(F,G) = \{H(z) \mid F(z) \ge H(z) \ge G(z) \quad \forall z \in \mathbb{R}\}\$$

- P-boxes may be formulated from
 - Known distributions with uncertain parameters (e.g., mean, standard deviation)
 - Any bounds consistent with available information
- Arithmetic operations can be defined in a manner analogous to intervals
- P-box operations are implemented in Risk Calc

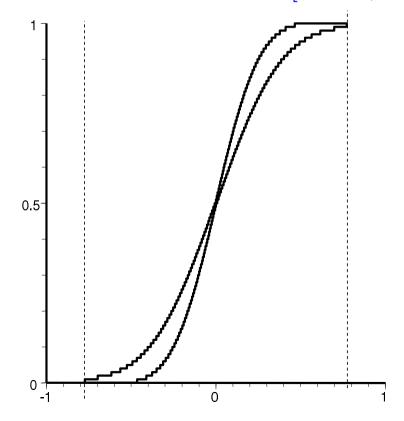
• P-boxes provide an interval of probabilities for a corresponding value or an interval of values for a corresponding probability



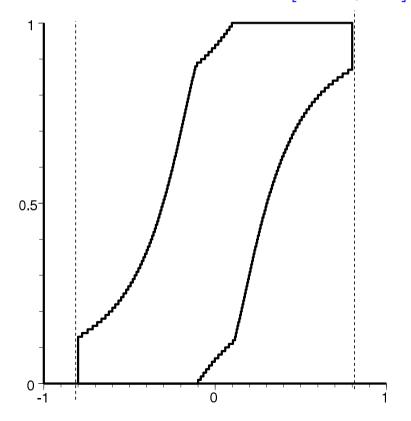
- Example of a p-box from a known distribution and uncertain parameter:
 - A "uniform" p-box with bounds obtained from a uniform distribution with fixed mean 0 and interval standard deviation [0.2, 0.3]
 - This p-box can be enclosed in the interval $\left[-0.52, 0.52\right]$



- Another example of a p-box from a known distribution / uncertain parameter:
 - A "normal" p-box with bounds obtained from a truncated normal distribution with fixed mean 0 and interval standard deviation [0.2, 0.3]
 - This p-box can be enclosed in the interval [-0.78, 0.78]



- An example of a p-box with unknown distribution and certain parameters:
 - This "mmms" p-box bounds all CDF's with known minimum (-0.8), maximum (0.8), mean (0), and standard deviation (0.3)
 - This p-box can be enclosed in the interval [-0.8, 0.8]



 Traditional ODE solvers such as Euler's method or Runge-Kutta are real-valued and do not provide guaranteed error bounds

- Traditional ODE solvers such as Euler's method or Runge-Kutta are real-valued and do not provide guaranteed error bounds
- Monte Carlo approaches can estimate effects of interval or non-interval uncertainties, but cannot sample entire space and do not provide guaranteed bounds

- Traditional ODE solvers such as Euler's method or Runge-Kutta are real-valued and do not provide guaranteed error bounds
- Monte Carlo approaches can estimate effects of interval or non-interval uncertainties, but cannot sample entire space and do not provide guaranteed bounds
- Interval and Taylor model ODE solvers compute guaranteed bounds on the solution, capturing error due to truncation, parameter uncertainty, and rounding, but do not consider non-interval uncertainty and can be overly pessimistic

- Traditional ODE solvers such as Euler's method or Runge-Kutta are real-valued and do not provide guaranteed error bounds
- Monte Carlo approaches can estimate effects of interval or non-interval uncertainties, but cannot sample entire space and do not provide guaranteed bounds
- Interval and Taylor model ODE solvers compute guaranteed bounds on the solution, capturing error due to truncation, parameter uncertainty, and rounding, but do not consider non-interval uncertainty and can be overly pessimistic
- P-box arithmetic allows for propagation of non-interval (probabilistic) uncertainties in algebraic models

- Traditional ODE solvers such as Euler's method or Runge-Kutta are real-valued and do not provide guaranteed error bounds
- Monte Carlo approaches can estimate effects of interval or non-interval uncertainties, but cannot sample entire space and do not provide guaranteed bounds
- Interval and Taylor model ODE solvers compute guaranteed bounds on the solution, capturing error due to truncation, parameter uncertainty, and rounding, but do not consider non-interval uncertainty and can be overly pessimistic
- P-box arithmetic allows for propagation of non-interval (probabilistic) uncertainties in algebraic models
 - There is a need for propagation of probabilistic uncertainties in dynamic models

• We return to the general ODE initial value problem

$$y'(t) = f(y, \theta), \quad y(t_0) = y_0 \in Y_0, \quad \theta \in \Theta$$

We return to the general ODE initial value problem

$$y'(t) = f(y, \theta), \quad y(t_0) = y_0 \in Y_0, \quad \theta \in \Theta$$

- Overall goal:
 - Given p-box enclosures of initial conditions and parameters with Y_0 and Θ_0 , and a deterministic ODE model
 - Compute a p-box enclosure of state variables at specific times

We return to the general ODE initial value problem

$$y'(t) = f(y, \theta), \quad y(t_0) = y_0 \in Y_0, \quad \theta \in \Theta$$

- Overall goal:
 - Given p-box enclosures of initial conditions and parameters with Y_0 and Θ_0 , and a deterministic ODE model
 - Compute a p-box enclosure of state variables at specific times
- Solution procedure
 - Use VSPODE (Lin and Stadtherr, 2007) to compute a Taylor model $T_y(y_0,\theta)$ of the state variables at the desired time
 - Substitute p-boxes for y_0 and θ into $T_y(y_0,\theta)$ and use Risk Calc to compute a p-box enclosure of y

• The first phase of VSPODE guarantees existence and uniqueness of solution across the time interval $[t_j,t_{j+1}]$ using an interval Taylor series (Nedialkov et. al., 1999)

- The first phase of VSPODE guarantees existence and uniqueness of solution across the time interval $[t_j,t_{j+1}]$ using an interval Taylor series (Nedialkov et. al., 1999)
- ullet At time t_j it is known that $y(t_j) \in Y_j$ (this is a result of the previous time step)

- The first phase of VSPODE guarantees existence and uniqueness of solution across the time interval $[t_j,t_{j+1}]$ using an interval Taylor series (Nedialkov et. al., 1999)
- ullet At time t_j it is known that $y(t_j) \in Y_j$ (this is a result of the previous time step)
- ullet To obtain an enclosure at time t_{j+1} , an appropriate time step $h_j=t_{j+1}-t_j$ and a priori enclosure $ilde{Y}\in ilde{Y}^0_j$ are found to satisfy

$$Y_j + \left(\sum_{i=1}^{k-1} [0, h_j]^i F^{[i]}(Y_j)\right) + [0, h_j]^k F^{[k]}(\tilde{Y}_j^0) \subseteq \tilde{Y}_j^0$$

- The first phase of VSPODE guarantees existence and uniqueness of solution across the time interval $[t_j,t_{j+1}]$ using an interval Taylor series (Nedialkov et. al., 1999)
- ullet At time t_j it is known that $y(t_j) \in Y_j$ (this is a result of the previous time step)
- ullet To obtain an enclosure at time t_{j+1} , an appropriate time step $h_j=t_{j+1}-t_j$ and a priori enclosure $ilde{Y}\in ilde{Y}^0_j$ are found to satisfy

$$Y_j + \left(\sum_{i=1}^{k-1} [0, h_j]^i F^{[i]}(Y_j)\right) + [0, h_j]^k F^{[k]}(\tilde{Y}_j^0) \subseteq \tilde{Y}_j^0$$

ullet Here, $F^{[i]}(Y_j)$ is the interval extension of the ith Taylor coefficient of f

- The first phase of VSPODE guarantees existence and uniqueness of solution across the time interval $[t_j, t_{j+1}]$ using an interval Taylor series (Nedialkov et. al., 1999)
- ullet At time t_j it is known that $y(t_j) \in Y_j$ (this is a result of the previous time step)
- ullet To obtain an enclosure at time t_{j+1} , an appropriate time step $h_j=t_{j+1}-t_j$ and a priori enclosure $ilde{Y}\in ilde{Y}^0_j$ are found to satisfy

$$Y_j + \left(\sum_{i=1}^{k-1} [0, h_j]^i F^{[i]}(Y_j)\right) + [0, h_j]^k F^{[k]}(\tilde{Y}_j^0) \subseteq \tilde{Y}_j^0$$

- ullet Here, $F^{[i]}(Y_j)$ is the interval extension of the ith Taylor coefficient of f
- If this condition holds, then there is a unique solution $y(t;t_j,y_j,\theta)\in \tilde{Y}_j$ for all $t\in [t_j,t_{j+1}]$, all $y_j\in Y_j$, and all $\theta\in\Theta$

$$T_{y_{i0}} = (m(Y_{i0}) + (y_{i0} - m(Y_{i0})), [0, 0]), \quad i = 1, \dots, m$$
$$T_{\theta_i} = (m(\Theta_i) + (\theta_i - m(\Theta_i)), [0, 0]), \quad i = 1, \dots, p$$

• In the second phase of VSPODE, we obtain a tighter enclosure, so we represent uncertain initial states and parameters using Taylor models T_{y_0} and T_{θ} , with components

$$T_{y_{i0}} = (m(Y_{i0}) + (y_{i0} - m(Y_{i0})), [0, 0]), \quad i = 1, \dots, m$$
$$T_{\theta_i} = (m(\Theta_i) + (\theta_i - m(\Theta_i)), [0, 0]), \quad i = 1, \dots, p$$

 \bullet The interval Taylor series coefficients $F^{[i]}$ from the first phase are computed using Taylor models $T_{f^{[i]}}$

$$T_{y_{i0}} = (m(Y_{i0}) + (y_{i0} - m(Y_{i0})), [0, 0]), \quad i = 1, \dots, m$$
$$T_{\theta_i} = (m(\Theta_i) + (\theta_i - m(\Theta_i)), [0, 0]), \quad i = 1, \dots, p$$

- \bullet The interval Taylor series coefficients $F^{[i]}$ from the first phase are computed using Taylor models $T_{f^{[i]}}$
- The "wrapping effect" is reduced using a new type of Taylor model involving a parallelepiped remainder bound

$$T_{y_{i0}} = (m(Y_{i0}) + (y_{i0} - m(Y_{i0})), [0, 0]), \quad i = 1, \dots, m$$
$$T_{\theta_i} = (m(\Theta_i) + (\theta_i - m(\Theta_i)), [0, 0]), \quad i = 1, \dots, p$$

- \bullet The interval Taylor series coefficients $F^{[i]}$ from the first phase are computed using Taylor models $T_{f^{[i]}}$
- The "wrapping effect" is reduced using a new type of Taylor model involving a parallelepiped remainder bound
- ullet This results in a Taylor model $T_{y_{j+1}}$ in terms of the initial states y_0 and parameters heta

$$T_{y_{i0}} = (m(Y_{i0}) + (y_{i0} - m(Y_{i0})), [0, 0]), \quad i = 1, \dots, m$$
$$T_{\theta_i} = (m(\Theta_i) + (\theta_i - m(\Theta_i)), [0, 0]), \quad i = 1, \dots, p$$

- \bullet The interval Taylor series coefficients $F^{[i]}$ from the first phase are computed using Taylor models $T_{f^{[i]}}$
- The "wrapping effect" is reduced using a new type of Taylor model involving a parallelepiped remainder bound
- ullet This results in a Taylor model $T_{y_{j+1}}$ in terms of the initial states y_0 and parameters heta
- ullet The interval enclosure Y_{j+1} is computed by bounding $T_{y_{j+1}}$ over Y_0 and Θ

ullet For the time of interest t, VSPODE passes the Taylor model $T_y(y_0, heta)$ to Risk Calc to evaluate a p-box enclosure of the Taylor model

- ullet For the time of interest t, VSPODE passes the Taylor model $T_y(y_0, heta)$ to Risk Calc to evaluate a p-box enclosure of the Taylor model
- This Taylor model is a function of the initial states and parameters, so the p-box representation of these is now used

- ullet For the time of interest t, VSPODE passes the Taylor model $T_y(y_0, heta)$ to Risk Calc to evaluate a p-box enclosure of the Taylor model
- This Taylor model is a function of the initial states and parameters, so the p-box representation of these is now used
- This process is completed using standard independent p-box arithmetic

- ullet For the time of interest t, VSPODE passes the Taylor model $T_y(y_0, heta)$ to Risk Calc to evaluate a p-box enclosure of the Taylor model
- This Taylor model is a function of the initial states and parameters, so the p-box representation of these is now used
- This process is completed using standard independent p-box arithmetic
 - The computations are done by discretizing the p-box for different probabilities

- ullet For the time of interest t, VSPODE passes the Taylor model $T_y(y_0, heta)$ to Risk Calc to evaluate a p-box enclosure of the Taylor model
- This Taylor model is a function of the initial states and parameters, so the p-box representation of these is now used
- This process is completed using standard independent p-box arithmetic
 - The computations are done by discretizing the p-box for different probabilities
 - Using an optional procedure known as subinterval reconstitution (SIR), the p-boxes are partitioned in both directions, to reduce what is analogous to the "dependency" effect in intervals, and the resulting p-box has a tighter enclosure

 Simulate a simple predator-prey model with the ODE system with uncertainty in parameters

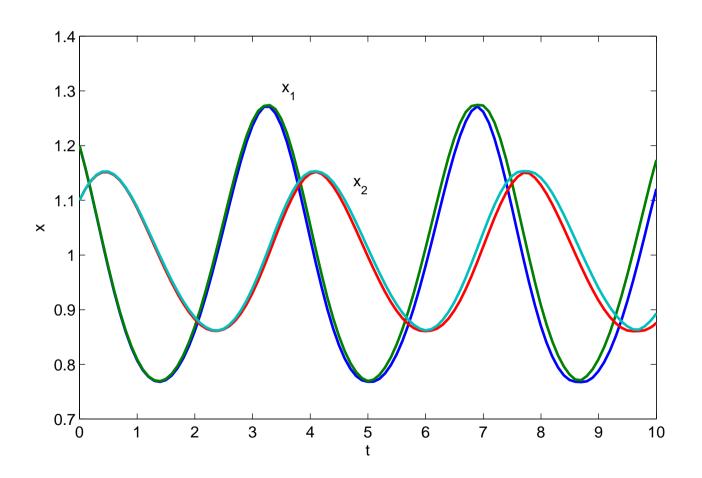
$$\frac{dx_1}{dt} = \theta_1 x_1 (1 - x_2), \quad x_1(0) = 1.2, \quad \theta_1 \in [2.99, 3.01]$$

$$\frac{dx_2}{dt} = \theta_2 x_2(x_1 - 1), \quad x_2(0) = 1.1, \quad \theta_2 \in [0.99, 1.01]$$

over the interval t = [0, 10]

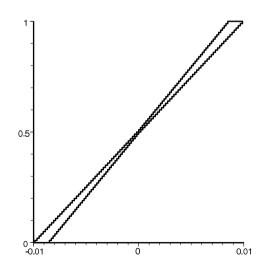
- The variables *x* represent the biomasses of the prey and predator
- ullet The parameters eta affect the growth and death of each species
- The distribution of uncertainties in θ_1 and θ_2 is described by uniform p-boxes with means equal to the interval midpoints and standard deviations in [0.0050, 0.0057]

ullet VSPODE enclosure of variable trajectory over [0,10] based on interval uncertainty

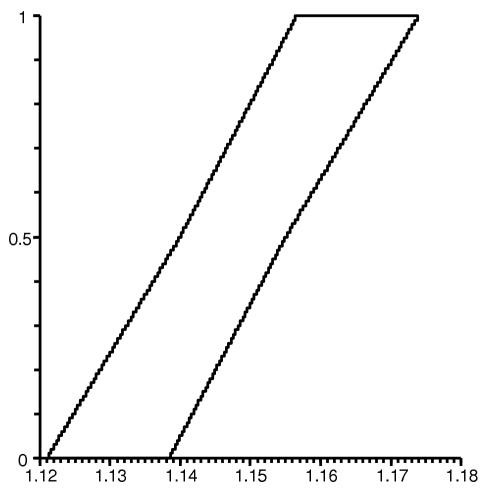


ullet P-box inputs into Taylor model at time t=10

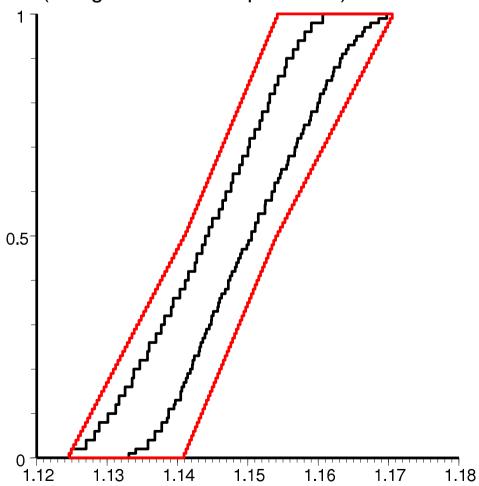
Quantity	Taylor Model	P-box
$ heta_1$	3 + [-0.01, 0.01]	$3+$ uniform(mean $=0$, s.d. $\in [0.050, 0.057]$)
$ heta_2$	1 + [-0.01, 0.01]	$1 + \text{uniform(mean} = 0, \text{ s.d.} \in [0.050, 0.057])$



ullet P-box enclosure of variable x_1 at time t=10 computed with Risk Calc, using Taylor model from VSPODE



ullet P-box enclosure (using SIR with 100 partitions) of variable x_1 at time t=10



ullet ODE model of cells with biomass X consuming substrate with mass S

$$\frac{dX}{dt} = (\mu - \alpha D)X$$

$$\frac{dS}{dt} = D(S_f - S) - k\mu X$$

• The growth rate μ is given by

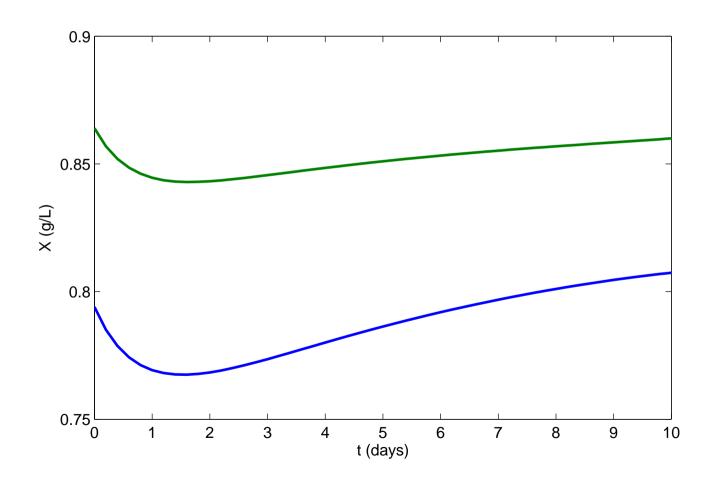
$$\mu = \frac{\mu_{max}S}{K_S + S + K_I S^2}$$

Parameter and initial condition values

	Value	Units		Value	Units
α	0.5		μ_{max}	[1.15, 1.25]	day^{-1}
k	10.53	(g S)/(g X)	K_S	[6.8, 7.2]	(g S)/L
D	0.36	day^{-1}	K_{I}	[0.0025, 0.01]	L /(g S)
S_f	5.7	(g S)/L	X_0	[0.794, 0.864]	(g X)/L
S_0	0.80	(g S)/L			

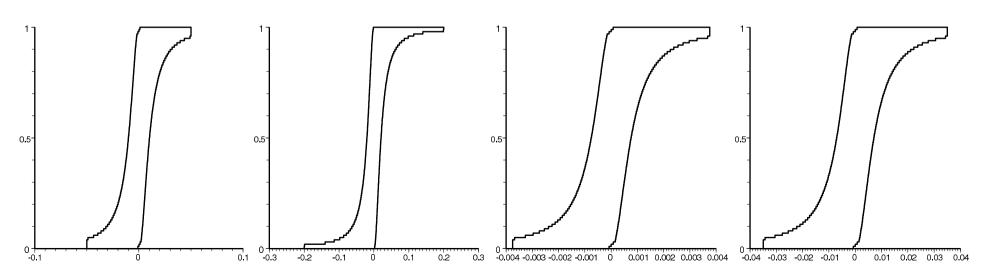
- Integrate over the time interval [0, 10]
- These interval values in both initial conditions and parameters are the maximums and minimums of the p-boxes that describe the uncertainties
 - P-boxes are mmms distributions with means at the midpoint of the interval and standard deviations one-tenth the width of the interval

 $\bullet\,$ VSPODE enclosure of variable trajectory over [0,10] based on interval uncertainty



ullet P-box inputs into Taylor model at time t=10

Quantity	Taylor Model	P-box	
μ_{max}	1.2 + [-0.05, 0.05]	$mmms(mean{=0}, s.d.{=0.01})$	
K_S	7 + [-0.2, 0.2]	$mmms(mean{=0}, s.d.{=0.04})$	
K_{I}	0.00625 + [-0.00375, 0.00375]	$\operatorname{mmms}(\operatorname{mean}=0, \operatorname{s.d.}=0.00075)$	
X_0	0.829 + [-0.035, 0.035]	$\operatorname{mmms(mean} = 0, \operatorname{s.d.} = 0.007)$	



 \bullet P-box enclosure of variable X across [0,10] computed with Risk Calc using Taylor model from VSPODE



• Consider cells of biomass x_1 that consume substrate of mass x_2 and create product of mass x_3

$$\frac{dx_1}{dt} = (\mu - D)x_1$$

$$\frac{dx_2}{dt} = D(x_{2f} - x_2) - \frac{\mu x_1}{Y}$$

$$\frac{dx_3}{dt} = -Dx_3 + (\alpha \mu + \beta)x_1,$$

where the growth rate is a function of both substrate and product concentrations

$$\mu = \frac{\mu_{max} \left[1 - (x_3/x_{3m}) \right] x_2}{k_s + x_2}$$

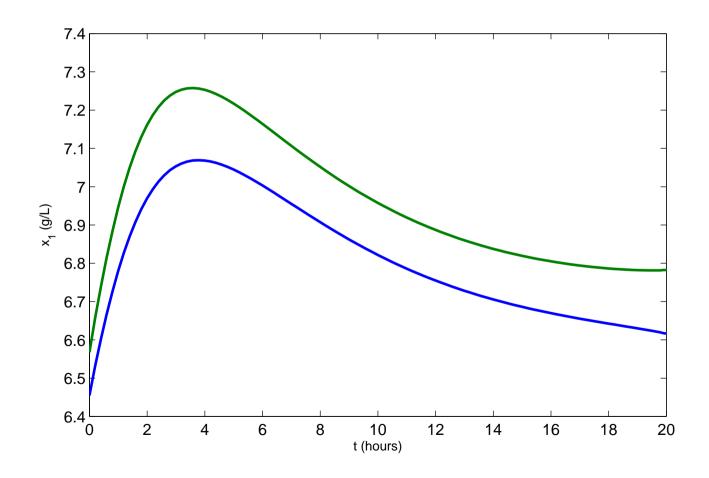
• Real-valued parameters and initial conditions

	Value	Units		Value	Units
x_{20}	5	g/L	x_{30}	15	g/L
Y	0.4	g/g	eta	0.2	${\rm hr}^{-1}$
D	0.202	${\rm hr}^{-1}$	lpha	2.2	g/g
x_{3m}	50	g/L	x_{3f}	20	g/L

• Uncertain parameters and initial conditions

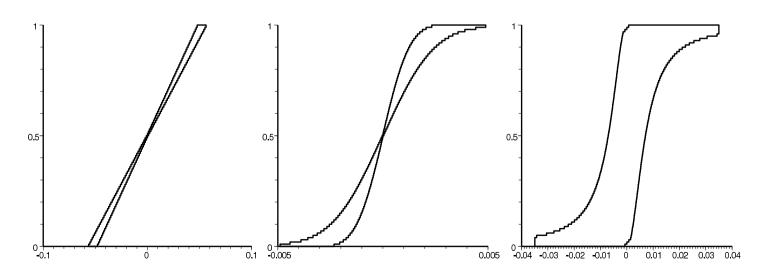
Quantity	Interval	Units	Taylor Model
x_{10}	[6.4549, 6.5676]	g/L	6.51125 + [-0.05635, 0.05635]
μ_{max}	[0.46, 0.47]	g/(g hr)	0.465 + [-0.005, 0.005]
k_s	[1.03, 1.1]	g/L	1.065 + [-0.035, 0.035]

ullet VSPODE enclosure of trajectory of x_1 over [0,20] based on interval uncertainty

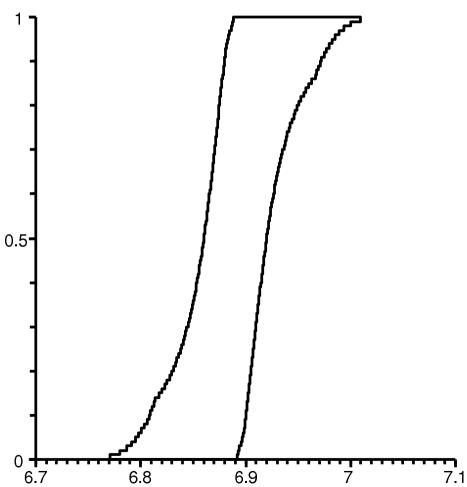


• Uncertain parameters and initial conditions

Quantity	P-box
x_{10}	6.51125 + uniform(mean = 0, s.d. = [0.02817, 0.032533])
μ_{max}	$0.465 + {\sf normal(mean} = 0, {\sf s.d.} = [0.0282, 0.0325])$
k_s	$1.065 + mmms(max{=0.035}, min{=0.035}, mean{=0}, s.d.{=0.007})$



ullet P-box enclosure of variable x_1 at t=10 computed with Risk Calc using Taylor model from VSPODE



Concluding Remarks

- VSPODE (Lin and Stadtherr, 2007) is a powerful tool to propagate interval uncertainties through nonlinear ODEs
- By using Taylor models from VSPODE and p-box arithmetic from Risk Calc, we can propagate probabilistic uncertainties (represented by p-boxes) through nonlinear ODE models
- Acknowledgments
 - U. S. Department of Energy (DE-FG02-05CH11294)
 - U. S. National Oceanic and Atmospheric Administration (NA050AR4601153)
- Contact: jenszer1@nd.edu, markst@nd.edu