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Dynamic Analysis of Structures with Interval Uncertainty 

 

 Abstract  

by 

MEHDI MODARRESZADEH 

 

 A new method for dynamic response spectrum analysis of a structural system with 

interval uncertainty is developed. This interval finite-element-based method is capable of 

obtaining the bounds on dynamic response of a structure with interval uncertainty. The 

proposed method is the first known method of dynamic response spectrum analysis of a 

structure that allows for the presence of any physically allowable interval uncertainty in 

the structure’s geometric or material characteristics and externally applied loads other 

than Monte-Carlo simulation. The present method is performed using a set-theoretic 

(interval) formulation to quantify the uncertainty present in the structure’s parameters 

such as material properties. Independent variations for each element of the structure are 

considered. At each stage of analysis, the existence of variation is considered as presence 

of the perturbation in a pseudo-deterministic system. Having this consideration, first, a 

linear interval eigenvalue problem is performed using the concept of monotonic behavior 

of eigenvalues for symmetric matrices subjected to non-negative definite perturbation 

which leads to a computationally efficient procedure to determine the bounds on a 

structure’s natural frequencies. Then, using the procedures for perturbation of invariant 

subspaces of matrices, the bounds on directional deviation (inclination) of each mode 

shape are obtained.  
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 Following this, the interval response spectrum analysis is performed considering 

the effects of input variation in terms of the structure’s total response that includes 

maximum modal coordinates, modal participation factors and mode shapes. Using this 

method, it is shown that calculating the bounds on the dynamic response does not require 

a combinatorial solution procedure. Several problems that illustrate the behavior of the 

method and comparison with combinatorial and Monte-Carlo simulation results are 

presented.  
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CHAPTER I 

 

INTRODUCTION 

 

 

1.1 Analytical Background 

 

 The dynamic analysis of a structure is an essential procedure to design a reliable 

structure subjected to dynamic loads such as earthquake excitations. The objective of 

dynamic analysis is to determine the structure’s response and interpret those theoretical 

results in order to design the structure. Dynamic response spectrum analysis is one of the 

methods of dynamic analysis which predicts the structure’s response using the 

combination of modal maxima.  

 However, throughout conventional dynamic response spectrum analysis, the 

possible existence of any uncertainty present in the structure’s geometric and/or material 

characteristics is not considered. In the design process, the presence of uncertainty is 

accounted for by considering a combination of load amplification and strength reduction 

factors that are obtained by modeling of historic data. However, the impact of presence of 

uncertainty on a design is not considered in the current deterministic dynamic response 

spectrum analysis. In the presence of uncertainty in the geometric and/or material 

properties of the system, an uncertainty analysis must be performed to obtain bounds on 

the structure’s response.  
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 Uncertainty analysis on the dynamics of a structure requires two major 

considerations: first, modifications on the representation of the characteristics due to the 

existence of uncertainty and second, development of schemes that are capable of 

considering the presence of uncertainty throughout the solution process. Those developed 

schemes must be consistent with the system’s physical behavior and also be 

computationally feasible.  

 The set-theoretic (unknown but bounded) or interval representation of vagueness 

is one possible method to quantify the uncertainty present in a physical system. The 

interval representation of uncertainty in the parametric space has been motivated by the 

lack of detailed probabilistic information on possible distributions of parameters and/or 

computational issues in obtaining solutions. 

 In this work, a new method for dynamic response spectrum analysis of a structural 

system with interval uncertainty entitled Interval Response Spectrum Analysis (IRSA) is 

developed. IRSA enhances the deterministic dynamic response spectrum analysis by 

including the presence of uncertainty at each step of the analysis procedure. In this finite-

element-based method, uncertainty in the elements is viewed by a closed set-

representation of element parameters that can vary within intervals defined by extreme 

values. This representation transforms the point values in the deterministic system to 

inclusive sets of values in the system with interval uncertainty.  

 The concepts of matrix perturbation theories are used in order to find the bounds 

on the intervals of the terms involved in the modal contributions to the total structure’s 

response including: circular natural frequencies, mode shapes and modal coordinates.  



 13 
 

 Having the bounds on those terms, the bounds on the total response are obtained 

using interval calculations. Functional dependency and independency of intervals of 

uncertainty are considered in order to attain sharper results. The IRSA can calculate the 

bounds on the dynamic response without combinatorial or Monte-Carlo simulation 

procedures. This computational efficiency makes IRSA an attractive method to introduce 

uncertainty into dynamic analysis. 

 This work represents the synthesis of two historically independent fields, 

structural dynamics and interval analysis. In order to represent the background for this 

work, a review of development of both fields is presented. 

 

1.2 Dissertation Overview 

 

 In chapter II, the analytical procedure for deterministic dynamic analysis is 

presented. Chapter III is devoted to fundamentals of uncertainty analyses with emphasis 

on the interval method. In chapter IV, matrix perturbation theories for eigenvalues and 

eigenvectors are discussed. Chapter V introduces the method of interval response 

spectrum analysis. In chapter VI, the bounds on variations of natural frequencies and 

mode shapes are obtained. Chapter VII is devoted to determination of the bounds on the 

total response of the structure. In chapter VIII, exemplars and numerical results are 

presented. Chapter IX is devoted to observations and conclusions. 
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CHAPTER II 

 

CONVENTIONAL DETERMINISTIC DYNAMIC ANALYSIS 

 

 

2.1 Structural Dynamics Historical Background 

 

 Modern theories of structural dynamics were introduced mostly in mid 20th 

century. M. A. Biot (1932) introduced the concept of earthquake response spectra and G. 

W. Housner  (1941) was instrumental in the widespread acceptance of this concept as a 

practical means of characterizing ground motions and their effects on structures. N. M. 

Newmark (1952) introduced computational methods for structural dynamics and 

earthquake engineering. In 1959, he developed a family of time-stepping methods based 

on variation of acceleration over a time-step.  

 A. W. Anderson (1952) developed methods for considering the effects of lateral 

forces on structures induced by earthquake and wind and C. T.  Looney (1954) studied 

the behavior of structures subjected to forced vibrations. Also, D. E. Hudson (1956) 

developed techniques for response spectrum analysis in engineering seismology. A. 

Veletsos (1957) determined natural frequencies of continuous flexural members. 

Moreover, he investigated the deformation of non-linear systems due to dynamic loads. 

E. Rosenblueth (1959) introduced methods for combining modal responses and 

characterizing earthquake analysis.  
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 J. Biggs (1964) developed dynamic analyses for structures subjected to blast 

loads. Moreover, numerical methods for dynamics of structures and modal analysis were 

further developed by J. Penzien and R. W. Clough (1993).  

 

2.2 Equation of Motion 

 

 In the development of IRSA, the truss element is used as the exemplar for a more 

general finite element analysis. Other than the details of interval parameterization of the 

resulting element matrices, the proposed method of IRSA should extend to a general 

finite element analysis.  

 Considering the partial differential equation of motion for a truss element:  

 0)()( ,, =+−− tpuucEAu xx &&& ρ  (2.1) 

with B.C. : 2,1 , Γ=Γ= onpEAuongu x  
 

in which, E  is the modulus of elasticity, A  is the cross-sectional area, c  is the viscous 

damping, ρ  is the mass density and )(tp  is the  external excitation. The terms uu &,  and 

u&&  are the displacement field and its temporal derivatives, respectively; and, x  is the 

spatial variable.  

 Multiplying by a test function )(η  in spatial domain in order to find 

)( 02
og HHu ∈∀∈ η , in which H is the Hilbert space, Eq. (2.1) becomes: 

 
 0..)]()[( ,, =++−−∫

Ω

CBdxdttpuucEAu xx &&& ρη  (2.2) 
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 Integrating by parts to obtain the symmetric weak form to find )( 11
og HHu ∈∀∈ η  

yields: 

 
  0..)]([ ,, =+−++∫

Ω

CBdxdttpuucEAu xx ηηρηη &&&  (2.3) 

 

 The spatial domain of displacement field and the test function can be semi-

discretized by approximating the functions u  and η  in space over each element by linear 

interpolation functions as: 

 ∑=
I

II tuxtxu )()(),( φ  (2.4) 

 
 ∑=

I
II txtx )()(),( ηφη  (2.5) 

 
in which: 

 
⎭
⎬
⎫

⎩
⎨
⎧ −

=
L
x

L
xLx T)}({φ  (2.6) 

 

Substituting the above relationships over the elements yields: 

 

 

(

) }0{..)(}{][}]{[}{}{][

...}]{[}{}{][}]{[}{}{][

,, =+Ω−

++∑ ∫
Ω

CBdtpLULEAL

ULcLULL

TT
xx

T

Element

TTTT

φφφ

φφφρφ &&&

 (2.7) 

 
where, }{U  is the vector of nodal displacement, }{U&  is the vector of nodal velocity, }{U&&  

is the vector of nodal acceleration, the vector )}({ tP  is the nodal external excitation and  

[ L ] is the Boolean connectivity matrix.  
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 Integrating over the domain, the equation of motion for vibration of a multiple 

degree of freedom (DOF) system is defined as a linear system of ordinary differential 

equations as: 

 
 )}({}]{[}]{[}]{[ tPUKUCUM =++ &&&  (2.8) 

 
where, ][ nnM × , ][ nnC × , and ][ nnK ×  are the global mass, global damping and global 

stiffness matrices, respectively.  

 

Stiffness and Mass Matrices for a Truss Element 

 

 The stiffness, consistent mass and lumped mass matrices for a linear truss element 

are as following, respectively. 

 

⎥
⎦

⎤
⎢
⎣

⎡
+−
−+

=
11
11

][
L

EAKe  ⎥
⎦

⎤
⎢
⎣

⎡
=

21
12

6
][ ALM C

e
ρ  ⎥

⎦

⎤
⎢
⎣

⎡
=

10
01

2
][ ALM L

e
ρ  

 

 

Solution to Equation of Motion 

  

 The solution of Eq.(2.8) can be divided into homogenous and particular parts. In 

fact, the homogenous part is the solution to the free vibration of the system and the 

particular part is the solution to the system’s forced vibration. Thus, in order to obtain the 

solution to Eq.(2.8), the following procedure can be used. 
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2.3 Free Vibration 

 

 The equilibrium equations for the free vibration of an undamped multiple degree 

of freedom system are defined as a set of linear homogeneous second-order ordinary 

differential equations as: 

 
 }0{}]{[}]{[ =+ UKUM &&  (2.9) 

 
Assuming a harmonic motion for the temporal displacement ( tieU ωϕ}{}{ = ), Eq.(2.9) is 

transformed to a set of linear homogeneous algebraic equations as: 

 
 }0{}]){)[(]([ 2 =− ϕω MK  (2.10) 

or: }]{)[(}]{[ 2 ϕωϕ MK =  (2.11) 

 
Eq.(2.10) is known as a generalized eigenvalue problem between the stiffness and mass 

matrices of the system.  

 The values of (ω ) are the natural circular frequencies and the vectors {ϕ } are the 

corresponding mode shapes.  

 

Solution to Eigenvalue Problem 

 

For non-trivial solutions, the determinant of ]))[(]([ 2 MK ω−  must be zero. This leads to 

a scalar equation, known as the characteristic equation, whose roots are the system’s 

natural circular frequencies of the system (ω ).  
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 Substituting each value of circular frequency in Eq.(2.10) yields a corresponding 

eigenvector or mode shape that is defined to an arbitrary multiplicative constant. The 

modal matrix [ ]}{...}{ 1 Nϕϕ  spans the N-dimensional linear vector space.  

 This means that the eigenvectors }{...}{ 1 Nϕϕ  form a complete basis, i.e., any 

vector such as the vector of dynamic response of a multiple degree of freedom (MDOF) 

system, )}({ tU , can be expressed as a linear combination of the mode shapes: 

 

 ∑
=

=+++=
N

n
nnNN tytytytytU

1
2211 )(}.{)(}.{...)(}.{)(}.{)}({ ϕϕϕϕ  (2.12) 

 
in which, the terms )(tyn  are modal coordinates and therefore, )}({ tU  is defined in 

modal coordinate space, since the values of {ϕ } are independent of time for linear 

systems, Eq. (2.11).  

 

 Furthermore, the temporal derivatives of total response can be expressed as: 

 

 ∑
=

=+++=
N

n
nnNN tytytytytU

1
2211 )(}.{)(}.{...)(}.{)(}.{)}({ &&&&& ϕϕϕϕ  (2.13) 

 ∑
=

=+++=
N

n
nnNN tytytytytU

1
2211 )(}.{)(}.{...)(}.{)(}.{)}({ &&&&&&&&&& ϕϕϕϕ  (2.14) 

 
which are also defined in modal coordinate space.  
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Orthogonality of Modes 

 
 Considering the generalized eigenvalue problem for the mth and nth circular 

frequencies and corresponding mode shapes: 

 

 }0{}]){)[(]([ 2 =− mm MK ϕω  (2.15) 

 }0{}]){)[(]([ 2 =− nn MK ϕω  (2.16) 

 
Pre-multiplying Eq.(2.15) and Eq.(2.16) by T

n }{ϕ and T
m }{ϕ , respectively: 

 
 0}]{[}){(}]{[}{ 2 =− m

T
nmm

T
n MK ϕϕωϕϕ  (2.17) 

 0}]{[}){(}]{[}{ 2 =− n
T

mnn
T

m MK ϕϕωϕϕ  (2.18) 

 
Then, transposing Eq (2.18) and invoking the symmetric property of the ][K  and ][M  

matrices yields: 

 0}]{[}){(}]{[}{ 2 =− m
T

nnm
T

n MK ϕϕωϕϕ  (2.19) 

 
Subtracting Eq.(2.19) from Eq.(2.17) yields:   

 
 ( ) 0}]{[}{)()( 22 =− m

T
nnm M ϕϕωω  (2.20) 

 

For any )( nm ≠ , if )( 22
nm ωω ≠ : 

 0}]{[}{ =m
T

n M ϕϕ  (2.21) 

 0}]{[}{ =m
T

n K ϕϕ  (2.22) 

 
Eqs.(2.21,2.22) express the characteristic of “orthogonality” of mode shapes with respect 

to mass and stiffness matrices, respectively. 
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2.4 Forced Vibration 

 

 The equation of motion for forced vibration of an undamped MDOF system is 

defined as: 

 )}({}]{[}]{[ tPUKUM =+&&  (2.23) 

 
Expressing displacements and their time derivatives in modal coordinate space: 

 

 )}({)(}]{[)(}]{[
11

tPtyKtyM n

N

n
nn

N

n
n =+∑∑

==

ϕϕ &&  (2.24) 

 
Premultiplying each term in Eq.(2.24) by T

n}{ϕ : 

 

 )}({}{)(}]{[}{)(}]{[}{
11

tPtyKtyM T
nn

N

n
n

T
n

N

n
nn

T
n ϕϕϕϕϕ =+∑∑

==

&&  (2.25) 

 
Invoking orthogonality, Eq.(2.24) is reduced to a set of N uncoupled modal equations as: 

 
 )}({}{)(}]{[}{)(}]{[}{ tPtyKtyM T

nnn
T

nnn
T

n ϕϕϕϕϕ =+&&  (2.26) 

 
or: )()()( tPtyKtyM nnnnn =+&&  (2.27) 

 
where, }]{[}{},]{[}{ n

T
nnn

T
nn KKMM ϕϕϕϕ == and )}({}{)( tPtP T

nn ϕ= are generalized 

modal mass, generalized modal stiffness and generalized modal force, respectively. 

Dividing by modal mass nM  and adding the assumed modal damping ratio ( nζ ), 

Eq.(2.27) becomes: 

 
n

n
nnnnnn M

tP
tytyty

)(
)()()()2()( 2 =++ ωωζ &&&  (2.28) 
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Proportional Excitation 

 
 If loading is proportional )(}{)}({ tpPtP = , meaning the applied forces have the 

same time variation defined by )(tp  (such as ground motion), Eq.(2.28) can be expressed 

as: 

 

 ( ))(}{}{)()()()2()( 2 tp
M

Ptytyty
n

T
n

nnnnnn
ϕωωζ =++ &&&  (2.29) 

 
Defining a modal participation factor, nΓ , as: 

 

 
}]{[}{

}{}{}{}{

n
T

n

T
n

n

T
n

n M
P

M
P

ϕϕ
ϕϕ

==Γ  (2.30) 

 
Also defining a scaled generalized modal coordinate: 

 

 
n

n
n

tytD
Γ

=
)()(  (2.31) 

 
Eq.(2.28) is rewritten in terms of the scaled modal coordinate ))(( tDn as:  

 
 )()()()()2()( 2 tptDtDtD nnnnnn =++ ωωζ &&&  (2.32) 

 
Therefore, using modal decomposition, the equation of motion for an N-DOF system is 

uncoupled to N equations of motion of generalized single degree of freedom (SDOF) 

systems. 
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2.4.1 Response History Analysis  

 

 In response history analysis (RHA), N uncoupled SDOF modal equations, 

Eq.(2.32), are solved for the modal coordinates ))(( tDn , and then, by superposing the 

modal responses, the total displacement response of the system is obtained as:  

 

 ∑
=

Γ=
N

n
nnn tDtU

1
}){))((()( ϕ  (2.33) 

 
in which the “time history” of the total response is obtained by the summation of modal 

responses as products of time history of modal coordinates ))(( tDn , modal participation 

factors )( nΓ , and modal displacements (mode shapes) }{ nϕ . Moreover, the time history 

of any load effect, )(tR , may be expressed as: 

 

 ∑
=

Γ=
N

n
nnn RtDtR

1

}){))((()(  (2.34) 

 
in which, }{ nR is a static modal load effect. 

 

2.4.2 Response Spectrum Analysis  

 

 In response spectrum analysis (RSA), for each uncoupled generalized SDOF 

modal equation, Eq.(2.32), the maximum modal coordinate )( max,nD  is obtained using the 

response spectrum of the external  excitation )(tp  and assumed modal damping nζ  

(Figure(1)).  
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 Response spectra are found by obtaining the maximum dynamic amplification 

(maximum ratio of dynamic to static responses) for a set of natural frequencies. 

 

Figure (1): A generic response spectrum for an external excitation )(tp  
 

Therefore, the modal response is obtained as: 

 

 }){)((}{ max,max, nnnn DU ϕΓ=  (2.35) 

 

Superposition of modal maxima 

 
 The total response is obtained using superposition of modal maxima. The 

superposition can be performed by summation of absolute values of modal responses.  

 

 ∑
=

=
N

n
nUU

1
max,max }{  (2.36) 

 
which provides a conservative estimate of the maximum response. As an approximation, 

the method of Square Root of Sum of Squares (SRSS) of modal maxima can be used 

when natural frequencies are distinct (Rosenblueth 1959): 

 

 ∑
=

=
N

n
nUU

1

2
max,max }{}{  (2.37) 

 
Also, the method of complete quadratic combination (CQC) can be used. 
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Ground Excitation- Response Spectrum Analysis 

 
 The equation of motion for an undamped MDOF system subjected to ground 

excitation (support motion) from an earthquake is: 

 
 }0{}]{[}]{[ =+ UKUM t&&  (2.38) 

 
where }{ tU&&  is the vector of absolute acceleration. The vector }{U  is defined as the 

relative displacement vector, defined as: 

 
 )}({}{}{ g

t UrUU −=  (2.39) 

 
where gUr}{  is the vector of rigid body pseudo-static displaced shape due to horizontal 

ground motion. Substituting Eq.(2.39) in Eq.(2.38) yields: 

 
  gUrMUKUM &&&& }]{[}]{[}]{[ −=+  (2.40) 

 
As before, solving the linear eigenvalue problem, defining the response in modal 

coordinate space, uncoupling and adding assumed modal damping yields: 

 

 g
n

T
n

T
n

nnnnnn U
M

rM
tytyty &&&&&

}]{[}{
}]{[}{

)()()()2()( 2

ϕϕ
ϕ

ωωζ −=++  (2.41) 

 
Defining the modal participation factor, nΓ , as: 

 

     
}]{[}{

}]{[}{

n
T

n

T
n

n M
rM
ϕϕ

ϕ
=Γ  (2.42)  
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Also, defining the scaled generalized modal coordinate nnn tytD Γ= /)()( , Eq.(2.40) may 

be rewritten in terms of the scaled modal coordinate ))(( tDn as:  

 
 gnnnnnn UtDtDtD &&&&& −=++ )()()()2()( 2ωωζ  (2.43) 

 
 Performing response spectrum analysis for ground excitation, for each uncoupled 

generalized SDOF modal equation, Eq.(2.43), the maximum modal response is obtained 

using earthquake response spectra such as the Newmark Blume Kapur (NBK) design 

spectra (Figure(2)).  

 

 

Figure (2): NBK design spectra (Newmark, Blume and Kapur 1973) 
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Therefore, the maximum modal coordinate is obtained as: 

 
 ),(max, nndn SD ζω=  (2.44) 

 
The total response is obtained using superposition of modal maxima. The superposition is 

performed by considering Square Root of Sum of Squares (SRSS) of modal maxima: 

 

 ∑
=

Γ=
N

n
nnnDU

1

222
max,max }{}{ ϕ  (2.45) 

 
 
 
2.5 Response Spectrum Analysis Summary 

 

 Response spectrum analysis to compute the dynamic response of a MDOF to 

external forces and ground excitation can be summarized as a sequence of steps as: 

 

1. Define the structural properties. 

• Determine the stiffness matrix ][K  and mass matrix ][M .  

• Assume the modal damping ratio nζ . 

2. Perform a generalized eigenvalue problem between the stiffness and mass matrices. 

• Determine natural circular frequencies ( nω ). 

• Determine mode shapes }{ nϕ . 
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3. Compute the maximum modal response. 

• Determine the maximum modal coordinate max,nD  using the excitation response 

spectrum for the corresponding natural circular frequency and modal damping 

ratio. 

•  Determine the modal participation factor nΓ . 

• Compute the maximum modal response as a product of maximum modal 

coordinate, modal participation factor and mode shape. 

4. Combine the contributions of all maximum modal responses to determine the 

maximum total reponse using SRSS or other combination methods. 

 

Limitations 

 
 In the presence of uncertainty in the structure’s physical or geometrical 

parameters, the deterministic structural dynamic analysis cannot be performed and hence, 

a new method must be developed to incorporate an uncertainty analysis into the 

conventional response spectrum analysis. 
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CHAPTER III 

 

UNCERTAINTY ANALYSIS FUNDAMENTALS 

 

 

3.1 Background 

 

 In structural engineering, design of an engineered system requires that the 

performance of the system is guaranteed over its lifetime. However, the parameters for 

designing a reliable structure possess physical and geometrical uncertainties. The 

presence of uncertainty can be attributed to physical imperfections, model inaccuracies 

and system complexities.  Moreover, neither the initial conditions, nor external forces, 

nor the constitutive parameters can be perfectly described. Therefore, in order to design a 

reliable structure, the possible uncertainties in the system must be included in the analysis 

procedures.  

 

Categories of Uncertainty 

 
The concept of uncertainty can be divided into two major categories: 

 
• Aleatory: The system has an intrinsic random or stochastic nature and it is not 

predictable. 

• Epistemic: The uncertainty induced by the lack of knowledge and it is predictable. 
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 Example of aleatory uncertainty is the behavior of photons in quantum mechanics 

where there is no hidden variable in the model or missing information.  

 Epistemic systems have uncertainty that may be reduced upon additional 

information. Uncertainty in the stiffness of a structural member may be reduced by 

measurement of the element behavior.    

 Aleatory uncertainty assumes that an underlying probability density function 

(PDF) exists and is the square of the wave function in quantum mechanics and also, the 

PDF is a fundamental property of the system.  

 In most engineering systems, the PDF is obtained from historic data and 

represents both epistemic and aleatory uncertainties.  Thus, the precise form of a PDF can 

only be assumed. On the other hand, interval methods play an important role in 

quantifying epistemic uncertainty. 

 

Deterministic analysis 

 
 In deterministic analysis of physical systems, defining the system’s characteristics 

as point quantities, using conventional deterministic algebraic values, is sufficient to 

model the  system and perform the analysis (Figure(3)). 

 

 

 

Figure (3): A deterministic algebraic variable  

 
 
 

ax =
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3.2 Uncertainty Analysis 

 
 In order to perform uncertainty analysis on a physical system, the uncertainty 

present in the system’s physical characteristics must be fully mathematically quantified. 

Presently, there are three paradigms to consider uncertainty in non-deterministic 

structural analysis: 

 
1. Stochastic analysis 

 
  In stochastic analysis, the theory of probability which was developed based on 

aleatory uncertainty. Extensions have been made such as “degree of belief” probability 

on subjective probability which includes epistemic effects.  

 
2. Fuzzy analysis 

  
 In fuzzy analysis, the theory of possibility for fuzzy sets is used which assumes 

epistemic uncertainty. 

 
3. Interval analysis 

   
 In interval analysis, the theory of convex (interval) sets is used which assumes 

epistemic or aleatory uncertainties (such as Dempster-Shafer bounds that are epistemic 

bounds on aleatory probability functions). 
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3.3 Stochastic Analysis 

 

 The stochastic approach to uncertain problems is to model the structural 

parameters as random quantities (Pascal 1654). Therefore, all information about the 

structural parameters is provided by the probability density functions. This probability 

density function is then used to determine an estimate of the system’s behavior. 

 

Random Variable 

 
A random quantity, used in stochastic analysis, is defined by a deterministic function that 

yields the probability of existence of the random variable in a given subset of the real 

space (Figure (4)), (Eq.(3.1)): 

 

Figure (4): Probability density function of a random quantity  

 

 ∫
∞−

=≤=
a

x dxxfaxPaF )(])([)(  (3.1) 

 
in which, )(aFx  is cumulative probability distribution function evaluated for random 

variable  )(a  and )(xf  is the corresponding probability density function.  
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3.4 Fuzzy Analysis 

 

 The fuzzy approach to the uncertain problems is to model the structural 

parameters as fuzzy quantities (Lotfi-zadeh 1965). In conventional set theories, either an 

element belongs or doesn’t belong to set. However, fuzzy sets have a membership 

function that allows for “partial membership” in the set. Using this method, structural 

parameters are quantified by fuzzy sets. Following fuzzifying the parameters, structural 

analysis is performed using fuzzy operations. 

 

Fuzzy Subset 

 
 Considering E as a referential set inℜ , an ordinary subset A of the referential set 

is defined by its characteristic function )(xAµ  as: 

 
 }1,0{)(: ∈∈∀ xEx Aµ  (3.2) 

 
which exhibits whether or not, an element of E belongs to the ordinary subset A. For the 

same referential set E, a fuzzy subset A is defined by its characteristic function, 

membership function )(xAµ , as: 

 
 ]1,0[)(: ∈∈∀ xEx Aµ  (3.3) 

 

 A fuzzy number is defined by its membership function whose domain is ℜwhile 

its range is bounded between [0,1]. The domain of the membership function is known as 

the interval of confidence and the range is known as the level of presumption.  
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 Therefore, each level of presumption α  (α -cut membership, ]1,0[∈α ) has a 

unique interval of confidence ],[ αα
α baA = , which is a monotonic decreasing function of 

α (Figure(5)), (Eqs. (3.4,3.5)): 

 
 

21
)(],1,0[, 2121 αααααα AA ⊂⇒>∈∀  (3.4) 

or: ],[],[)(],1,0[, 2211
2121

αααααααα baba ⊂⇒>∈∀  (3.5) 

 
 

 

Figure (5): Membership function of a fuzzy quantity 

 

3.5 Interval Analysis 

 

 The interval approach to the uncertain problems is to model the structural 

parameters as interval quantities. In this method, uncertainty in the elements is viewed by 

a closed set-representation of element parameters that can vary within intervals between 

extreme values. Then, structural analysis is performed using interval operations.  
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Interval Analysis Historical Background 

 
 The concept of representation of an imprecise real number by its bounds is quite 

old. In fact, Archimedes (287-212 B.C.) defined the irrational number (π) by an interval 

7
13

71
103 << π , which he found by approximating the circle with the inscribed and 

circumscribed 96-side regular polygons. Early work in modern interval analysis was 

performed by W. H. Young (1908), who introduced functions with values which are 

bounded between extreme limits. The concept of operations with a set of multi-valued 

numbers was introduced by R. C. Young (1931), who developed a formal algebra of 

multi-valued numbers.  Also, the special case of multi-valued functions with closed 

intervals was discussed by Dwyer (1951). The introduction of digital computers in the 

1950’s provided impetus for further interval analysis as discrete representations of real 

numbers with associated truncation error. 

 Interval mathematics was further developed by Sunaga (1958) who introduced the 

theory of interval algebra and its applications in numerical analysis. Also, R. Moore 

(1966) introduced interval analysis, interval vectors and interval matrices as a set of 

techniques that provides error analyses for computational results.  

 Interval analysis provides a powerful set of tools with direct applicability to 

important problems in scientific computing. Alefeld and Herzberger (1983) presented an 

extensive treatment of interval linear and non-linear algebraic equations and interval 

methods for systems of equations. Moreover, Neumaier (1990) investigated the methods 

for solution of interval systems of equations.   
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 The concept of interval systems has been further developed in analysis of 

structures with interval uncertainty. Muhanna and Mullen (1999) developed fuzzy finite-

element methods for solid mechanics problems.  For the solution of interval finite 

element method (IFEM) problems, Muhanna and Mullen (2001) introduced an Element-

by-Element interval finite element formulation, in which a guaranteed enclosure for the 

solution of interval linear systems of equations was achieved. 

 The research in interval eigenvalue problem began to emerge as its wide 

applicability in science and engineering was realized. Dief (1991) presented a method for 

computing interval eigenvalues of an interval matrix based on an assumption of 

invariance properties of eigenvectors. Using Dief’s method, the lower eigenvalues have a 

wider range of uncertainty than the exact results. 

 The concept of the interval eigenvalue problem has been developed in dynamics 

of structures with uncertainty. Qiu, Chen and Elishokoff (1995) have introduced a 

method to find the bounds on eigenvalues. In their work, the perturbation of the 

eigenvalue is derived from pre and post multiplying the perturbed matrix by the exact 

eigenvector which is inconsistent with matrix perturbation theories.  

 However, since the presence of perturbation in the matrix results in perturbation 

of both eigenvalues and eigenvectors, applying the unperturbed eigenvector to determine 

the perturbation of the eigenvalue may lead to incorrect results. The second problem in 

this work solves the problem cited by Qiu, Chen and Elishokoff (1995) for exact bounds 

with the present scheme and illustrates the difference in solution.  
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 Qiu, Chen and Elishokoff (1996) have introduced an alternate method for 

bounding the natural frequencies of a structural system. However, their results are wider 

than sharp values because of a non-parametric formulation and the existence of variation 

inside the matrices. Moreover, their definition of the concept of maximin characterization 

appears to be inconsistent with the formal mathematical definitions. The constraint-

induced subspaces in this concept are not completely arbitrary but they should be 

orthogonal to arbitrary vectors (Bellman 1960 and Strang 1976). The third problem in the 

present work solves the problem cited by Qiu, Chen and Elishokoff (1996) with the 

present scheme and compares the results.  

 As part of the present work, Modares and Mullen (2004) have introduced a 

method for the solution of the parametric interval eigenvalue problem resulting from 

semi-discretization of structural dynamics which determines the exact bounds of the 

natural frequencies of a structure.  

 

Interval (Convex) Number 

 
 A real interval is a closed set defined by extreme values as (Figure(6)): 

 
    }|{],[~ ulul zzzzzzZ ≤≤ℜ∈==   (3.6) 

 

 

 

 
Figure (6): An interval quantity 

 

],[~ bax =
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 One interpretation of an interval number is a random variable whose probability 

density function is unknown but non-zero only in the range of interval.  

 Another interpretation of an interval number includes intervals of confidence for 

α -cuts of fuzzy sets. This interval representation transforms the point values in the 

deterministic system to inclusive set values in the system with bounded uncertainty. 

 

Interval Arithmetic Operations 

 
 Interval arithmetic is a computational tool that can be used to represent 

uncertainty as: 

 

1. A set of probability density functions. 

2. In Dempster-Shafer models for epistemic probability. 

3. α - cuts in fuzzy sets. 

 

 In this work, the symbol (~) represents an interval quantity. Considering 

],[~ baX =  and ],[~ dcY =  as two interval numbers, the basic interval arithmetic 

operations are: 

 

 Addition:   

 ],[~~ dbcaYX ++=+  (3.7) 

Subtraction:     

 ],[~~ cbdaYX −−=−  (3.8) 
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Multiplication by scalar:      

 
 ]),,max(),,[min(~ babaX βββββ =×  (3.9) 

 
Multiplication:      

 
 )],,,max(),,,,[min(~~ bdbcadacbdbcadacYX =×  (3.10) 

 

Properties of Interval Multiplication: 

 

Associative:      

 
 XYYX ~~~~ ×=×  (3.11) 

 
Commutative:      

 
 ZYXZYX ~)~~()~~(~ ××=××  (3.12) 

 
Distributive:      

 
 ZXYXZYX ~~~~)~~(~ ×+×⊂+×  (3.13) 

 
 
 Therefore, the distributive property of interval multiplication is weaker than that 

in conventional algebra and it is one possible cause of loss of sharpness in interval 

operations. 
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Division:   

 

 ]),[0(],1,1[],[~
~

dc
cd

ba
Y
X

∉×=  (3.14) 

 
Interval Vector (2-D): 

 
⎭
⎬
⎫

⎩
⎨
⎧

=
⎭
⎬
⎫

⎩
⎨
⎧

=
],[
],[

~
~

~
dc
ba

Y
X

V  (3.15) 

 
which represents a “box” in 2-D space as the enclosure (Figure(7)).  

 

 

Figure (7): An interval vector 

 

Transformation of Interval to Perturbation 

 
 Perturbation methods often use small change in a parameterε . To express interval 

problems in terms of perturbation, an interval perturbation, ]1,1[−=ε , is introduced so 

that a general interval is written as summation of center and radial values. 
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 Considering ],[~ ulZ =  as an interval number, the median and radius can be 

defined as: 

 )
2

( ulZ C
+

=  (3.16) 

     )
2

)((~ luZ R
−

= ε  (3.17) 

 
So, Z~  can be redefined as: 

 
 RC ZZZ ~~ +=  (3.18) 

 
where, the interval number is shown as its median subjected to a perturbation of radius by 

which, the result encompasses the range of the interval between the extreme values.  

 

Functional Dependency of Interval Operations 

 
 Considering ]2,2[~ −=X  and ]2,2[~ −=Y  as two independent interval numbers, the 

functional dependent interval multiplication results in:  

 
]4,0[~~ =× XX  

 
In contrast, the functional independent interval multiplication results in: 

 
]4,4[~~ −=×YX  
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Sharpness Considerations in Engineering 

 
 In interval operations, the functional dependency of intervals must be considered 

in order to attain sharper results. In fact, the issue of sharpness and overestimation in 

interval bounds is the key limitation in the application of interval methods. Naïve 

implementation of interval arithmetic algorithms (substituting interval operations for their 

scalar equivalence) will yield bounds that are not useful for engineering design. 

Therefore, there is a need to develop algorithms to calculate sharp or nearly sharp bounds 

to the underlying set theoretic interval problems.  

 For instance, the calculation of exact sharp bounds to the interval system of 

equations resulting from linear static analysis using the finite element method has been 

proved to be computationally combinatorial problem. However, even the 2n combinations 

of upper and lower bounds do not always yield the bounds. 

 In problems with narrow intervals associated with truncation errors, the naïve 

implementation of interval arithmetic will yield acceptable bounds. However, for wider 

intervals representing uncertainty in parameters, the naïve method will overestimate the 

bounds by several orders of magnitude.  

 Successful applications of the interval method in the linear static problem have 

required the development of new algorithms that are computationally feasible yet still 

provide nearly sharp bounds (Muhanna and Mullen 2003).  
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Objective 

 
 The goal of this research is to solve an interval structural dynamics problem, i.e., 

given uncertainty in material or geometric properties expressed as intervals multiplying 

element stiffness or mass matrices, find the interval bounds on the structure’s response. 

 One approach for solution to the interval system is applying perturbation theories 

of mathematics to the interval system. Specifically, perturbation theories in eigenvalue 

problems, needed for structural dynamics, can be used to obtain the bounds on 

eigenvalues and eigenvectors that will be addressed in the next chapter.  However, some 

perturbation theories require the constraint of smallness of the radial perturbation in 

comparison with the median value. This smallness must be considered throughout the 

analysis procedure.    
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CHAPTER IV 

 

MATRIX PERTURBATION THEORIES 

 

 

4.1 Perturbation of Eigenvalues  

  

 The classical linear eigenvalue problem for a symmetric matrix ( TAA ][][ = ) is: 

 
 }{}]{[ xxA λ=  (4.1) 

 
with the solution of real eigenvalues ( nλλλ ≤≤≤ ...21 ) and corresponding eigenvectors 

( nxxx ,...,, 21 ). This equation can be transformed into a ratio of quadratics known as the 

Rayleigh quotient: 

 
}{}{

}]{[}{)(
xx

xAxxR T

T

=  (4.2) 

 
Transforming the Rayleigh quotient to the principal basis with the orthogonal matrix ][Q  

(matrix of eigenvectors) obtained by the eigenvalue decomposition of matrix 

( TQQA ]][][[][ Λ= ), in which  ][Λ  is the diagonal matrix of eigenvalues and 

( }{][}{ xQy T= ), the quotient becomes: 
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Furthermore: 
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Therefore, the Rayleigh quotient for a symmetric matrix is bounded between the smallest 

and the largest eigenvalues (Strang 1976). 

 

 nT

T

xx
xAxxR λλ ≤=≤

}{}{
}]{[}{)(1  (4.6) 

 
Thus, the first eigenvalue ( 1λ ) can be obtained by performing an unconstrained 

minimization on the scalar-valued function of Rayleigh quotient:   

 

 1)
}{}{

}]{[}{(min)(min λ==
∈∈ xx

xAxxR T

T

RxRx nn
 (4.7) 

 
 In order to find the intermediate eigenvalues, additional constraints must be 

imposed on this minimization problem. The second eigenvalue can be determined by 

imposing a single constraint, i.e., the trial vector }{x  shall be perpendicular to an 

arbitrary vector }{z  )0}{}({ =zx T .This restriction changes the problem to a set of 

constrained minimizations whose upper-bound is the second smallest eigenvalue ( 2λ ). So 

for any choice of }{z : 

 
 210

)()(min λµ ≤=
=

zxR
zxT

 (4.8) 
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 This is proven by considering the trial vector }{x  as a non-zero combination of 

the first and second normalized eigenvectors:  

 
 }{}{}{ 21 xxx βα +=  (4.9) 

 
in which, }{x  will be orthogonal to }{z . This only imposes a single condition on (α ) and 

( β ). For any combination of the first two eigenvectors: 
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 (4.10) 

 
 Therefore, the minimization of )(xR  subject to a single constraint )0}{}({ =zx T  

and then choosing the vector }{z  that maximizes these minima yields the second smallest 

eigenvalue ( 2λ ). 

 
 )](minmax[

0
2 xR

zxT =
=λ  (4.11) 

 
 This result can be generalized to obtain the next eigenvalues by applying 

additional constraints to )(xR  as: 

 
 )](max[min xRk =λ  (4.12) 

(subject to constrains 2,1,...1),0}{}({ ≥−== kkizx i
T ) 

 
This principle is called the maximin characterization of eigenvalues for symmetric 

matrices. 
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Geometric Observation 

 
 Geometrically, if [A] is positive definite, the numerator of the Rayleigh quotient 

( 1}]{[}{ =xAx T ) defines a hyper-ellipsoid in n-dimensional space which is centered at 

the origin. Transforming the system to the principal basis, the equation of the hyper-

ellipsoid is: 

 
 1... 22

22
2
11 =+++ nn yyy λλλ  (4.13) 

 
 Therefore, the principal axes of the hyper-ellipsoid are in the directions of the 

eigenvectors. Furthermore, pointing to the direction of the jth eigenvector 

)](),0[( jiyi ≠= : 

 

 
j

jjj yy
λ

λ 112 =→=  (4.14) 

 
 Thus the length of each semi-axis is the reciprocal of the square root of the 

eigenvalue whose corresponding eigenvector is collinear with that semi-axis (Strang 

1976). Therefore, performing the unconstrained minimization on the Rayleigh quotient, 

which finds the absolute minimum ( 1λ ), can geometrically be interpreted as determining 

the semi-axis of greatest length )/1( 11 λ=y . 

 Passing an arbitrary plane through the origin of hyper-ellipsoid creates a cross-

section which is again an ellipsoid, in one lower dimension. If this cross-sectional 

ellipsoid is rotated until its greatest semi-axis )/1( 1µ  assumes its smallest value, the 

semi-axis of the original ellipsoid of second greatest length is determined )/1( 22 λ=y . 
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 This observation can be considered as the geometric interpretation of the concept 

of maximin characterization of eigenvalues for symmetric matrices. Figure (8) shows this 

concept for a 3D ellipsoid schematically. 

 

 

Figure (8):  3D Ellipsoid and its elliptic cross-section 

with semi-axes related to eigenvalues 
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Symmetric Matrix Non-Negative Definite Perturbation 

 
 If the symmetric matrix [A] is subjected to a symmetric non-negative definite 

perturbation matrix ][E , )0}]{[}({ ≥xEx T  using the unconstrained minimization of 

)(xR , the first eigenvalue of the perturbed matrix is: 

 

 )(
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}]{[}{min
}{}{

}]{[}{min)(ˆ
11 A

xx
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xx
xEAxEA T

T

T

T

λλ =≥
+

=+  (4.15) 

  
For the next eigenvalues of the perturbed matrix, the maximin characterization of 

eigenvalues can be used as: 
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 (4.16) 

  
 Therefore, all eigenvalues of a symmetric matrix subject to a non-negative 

definite perturbation monotonically increase from the eigenvalues of the exact matrix.   

 
 )()(ˆ AEA kk λλ ≥+  (4.17) 

 
 Similarly, all eigenvalues of a symmetric matrix subject to a non-positive definite 

perturbation monotonically decrease from the eigenvalues of the exact matrix.  

 
 )()(ˆ AEA kk λλ ≤−  (4.18) 
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This concept is known as the “monotonic behavior” of eigenvalues of symmetric matrices 

subject to a symmetric non-negative (or non-positive) perturbation (Bellman 1960). 

 

4.2 Perturbation of Eigenvectors 

 

4.2.1 Theory of Simple Invariant Subspaces 

 

Invariant Subspace 

 
 The subspace χ  is defined to be an invariant subspace of matrix ][A  if: 

 
 χχ ⊂A  (4.19) 

 
This means that if χ  is an invariant subspace of nnA ×][  and also, columns of mnX ×][ 1  

form a basis for χ , then there is a unique matrix mmL ×][ 1  such that: 

 
 ]][[]][[ 111 LXXA =  (4.20) 

 
 The matrix ][ 1L  is the representation of ][A  on χ  with respect to the basis ][ 1X  

and the eigenvalues of ][ 1L  are a subset of eigenvalues of ][A . Therefore, for the 

invariant subspace, )},({ λv  is an eigenpair of ][ 1L  if and only if )}},]{({[ 1 λvX  is an 

eigenpair of ][A .  
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Theorem of Invariant Subspaces 

 
 For a real symmetric matrix ][A , considering the subspace χ  with the linearly 

independent columns of ][ 1X  forming a basis for χ  and the linearly independent 

columns of ][ 2X  spanning the complementary subspace ⊥χ , then,  χ  is an invariant 

subspace of ][A  if and only if: 

 
 ]0[]][[][ 12 =XAX T  (4.21) 

 
 Therefore, invoking the necessary and sufficient condition and postulating the 

definition of invariant subspaces, the symmetric matrix ][A  can be reduced to a 

diagonalized form using a unitary similarity transformation as: 

 

 ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
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⎡
=

][]0[
]0[][

]][[][]][[][
]][[][]][[][

]][[][
2

1

2212

2111
2121 L

L
XAXXAX
XAXXAX

XXAXX TT

TT
T  (4.22) 

where .2,1],][[][][ == iXAXL i
T

ii  

 

Simple Invariant Subspace 

 
 An invariant subspace is simple if the eigenvalues of its representation ][ 1L  are 

distinct from other eigenvalues of ][A . Thus, using the reduced form of ][A  with respect 

to the unitary matrix ]]][[[ 21 XX , χ  is a simple invariant subspace if the eigenvalues of 

][ 1L  and ][ 2L  are distinct: 

 
 ∅=])([])([ 21 LL λλ I  (4.23) 
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Spectral Resolution 

 
 The symmetric matrix ][A  can be decomposed as the summation of contributions 

of simple invariant subspaces χ and ⊥χ  as: 

 
 TT XLXXLXA ]][][[]][][[][ 222111 +=  (4.24) 

 
which is the spectral resolution of the matrix ][A  into two complementary invariant 

subspaces. 

 

Spectral Projection 

 
 Considering the projection matrices 2,1,]][[][ == iXXP T

iii  with properties as:  

 
 )2,1(][][ 2 == iPP ii  (4.25a) 

 ]0[]][[]][[ 1221 == PPPP  (4.25b) 

 ]][][[]][][[][ 2211 PAPPAPA +=  (4.25c) 

 
hence, any vector }{z  can be decomposed into the sum of two vectors, }{}{}{ 21 xxz +=  

and ( ⊥∈∈ χχ }{,}{ 21 xx ), in which, the decomposed component vectors are obtained 

using projection matrices as: 

 
   }]{[}{ 11 zPx =  (4.26) 

 }]{[}]){[]([}{ 212 zPzPIx =−=  (4.27) 

 
which are known as spectral projections of simple invariant subspaces. 



 53 
 

4.2.2 Perturbation of Simple Invariant Subspaces 

 

 Considering the column spaces of ][ 1X  and ][ 2X   to span two complementary 

simple invariant subspaces, the perturbed orthogonal subspaces are defined as: 

 
 ]][[][]ˆ[ 211 PXXX +=  (4.28) 

 TPXXX ]][[][]ˆ[ 122 −=  (4.29) 

 
in which ][P  is a matrix to be determined. Thus, each perturbed subspace is defined as a 

summation of the exact subspace and the contribution of the complementary subspace.    

 

Orthonormalization: 

 
 Performing inner products on each perturbed subspace, Eqs(4.28,4.29), as: 

 
 ])[][]([]ˆ[]ˆ[ 11 PPIXX TT +=  (4.30) 

 )]][[]([]ˆ[]ˆ[ 22
TT PPIXX +=  (4.31) 

 
the perturbed complementary subspaces can be orthonormalized as:  

 

 2
1

211 ])[][]])([][[]([]ˆ[
−

++= PPIPXXX T  (4.32) 

 2
1

122 )]][[])([]][[]([]ˆ[
−

+−= TT PPIPXXX  (4.33) 

 
in which, the redefined perturbed subspaces have orthonormal columns. 
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Perturbation Problem 

 
 Considering a symmetric perturbation ][E , the perturbed matrix is defined as: 

 
 ][][]ˆ[ EAA +=  (4.34) 

 
Performing the similarity transformation on the symmetric perturbed matrix ]~[A  using 

the unitary matrix ]]ˆ][ˆ[[ 21 XX  obtained from the orthonormalized perturbed subspaces as: 

 

 ⎥
⎦

⎤
⎢
⎣

⎡
=

]ˆ[]ˆ[
]ˆ[]ˆ[]ˆˆ][ˆ[]ˆˆ[
2

1
2121 LG

GLXXAXX
T

T  (4.35) 

 
Then, using the theorem of invariant subspaces, ]ˆ[ 1X  is an invariant subspace if and only 

if: 

 ]0[]ˆ][ˆ[]ˆ[]ˆ[ 12 == XAXG T  (4.36) 

 
Substituting the perturbed matrix and perturbed subspaces, Eqs.(4.32-4.34), and 

linearizing the result due to a small perturbation compared to the unperturbed matrix, 

Eq(4.36) is rewritten as: 

 
 ]][[][]][[]][[ 1221 XEXPLLP T=−  (4.37) 

 
This perturbation problem is an equation for unknown ][P  in the form of a Sylvester’s 

equation. 
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Sylvester’s Equation 

 
 A Sylvester’s equation (J.  J. Sylvester 1814-1897) is of the form: 

 
 ][]][[]][[ CBXXA =−  (4.38) 

 
in which, nnA ×][ , mmB ×][ and mnC ×][  are known matrices, and mnX ×][  is the unknown 

matrix to be determined. Equivalently, a linear operator ][T  can be defined as:   

 
 mnmn BXXAXT ×× −→= ])][[]][([][][  (4.39) 

 
The uniqueness of the solution to the Sylvester’s equation is guaranteed when the 

operator ][T  is nonsingular. The operator ][T  is nonsingular if and only if the 

eigenvalues of ][A  and ][B  are distinct: 

 
 ∅=])([])([ BA λλ I  (4.40) 

 
Thus, for the perturbation problem, Eq.(4.37), the uniqueness of the solution matrix ][P  

is guaranteed if the eigenvalues of ][ 1L  and ][ 2L  are distinct and hence, for the 

uniqueness, the column spaces of ][ 1X  and ][ 2X   must span two simple invariant 

subspaces, Eq.(4.23). 
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4.2.3 Perturbation of Eigenvectors 

 

 The perturbation of the first eigenvector, using Eq.(4.28), is defined as: 

 
 ]][[}{}ˆ{ 211 pXxx +=  (4.41) 

 
Thus, the perturbation problem, Eq.(4.37), is considerably simplified as: 

 
 }]{[][]][[][ 1221 xEXpLp T=−λ  (4.42) 

 
since, the operator ][T  is  specialized as ])[][( 21 LI −λ . If )( 1λ is a simple eigenvalue, the 

solution for ][ p exists and is unique as: 

 
 }]{[][])[][(][ 12

1
21 xEXLIp T−−= λ  (4.43) 

 
Therefore the perturbed eigenvector is: 

 
 }]{[][])[][]([}{}ˆ{ 12

1
21211 xEXLIXxx T−−+= λ  (4.44) 

 
Also, the number TXLIX ][])[][]([ 2

1
212

−−λ  is known as the condition number of the 

eigenvector }{ 1x  (Stewart and Guang 1991).  

 For each eigenvalue, the perturbed eigenvector can be found using Eq. (4.44). 
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CHAPTER V 

 

INTERVAL RESPONSE SPECTRUM ANALYSIS 

 

 

 As mentioned in chapter II, in the presence of uncertainty in the structure’s 

geometrical or material characteristics, the conventional response spectrum analysis 

cannot be performed to obtain the structure’s responses. In this work, a new method is 

developed which is capable of performing a response spectrum analysis and obtaining the 

bounds on the structure’s response when the parameters in the structure are unknown but 

bounded. This method, entitled Interval Response Spectrum Analysis (IRSA), enhances 

the procedure in deterministic response spectrum analysis to take into account the 

existence of interval uncertainty throughout the solution process. 

 

5.1 IRSA Procedure: 

 

 First, IRSA defines the uncertainty in the system’s parameters as closed intervals, 

therefore, the imprecise property can vary within the intervals between extreme values 

(bounds). Then, having the uncertain parameters represented by interval variables for 

each element, the interval global stiffness and mass matrices of MDOF system are 

assembled. This assemblage is performed such that the element physical characteristics 

and the matrix mathematical properties are preserved.   
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 Then an interval generalized eigenvalue problem between the interval stiffness 

and mass matrices is established. From this interval eigenvalue problem, two solutions of 

interest are obtained: 

 
1. Bounds on variation of circular natural frequencies (Interval natural frequencies) 

2. Bounds on directional deviation of mode shapes (Interval mode shapes) 

 
 Then, the interval modal coordinate and the maximum modal coordinate are 

determined using the excitation response spectrum evaluated for the corresponding 

interval of natural circular frequency and assumed modal damping ratio. Then, the 

interval modal participation factor is computed. Dependency or independency of 

variations in interval modal participation factor is considered. Following this, the 

maximum modal response is computed as a maximum of the product of the maximum 

modal coordinate, the interval modal participation factor and the interval mode shape. 

Finally, the contributions of all maximum modal responses are combined to determine 

the maximum total response using SRSS or other combination methods. 

 

5.2 Interval Representation of Uncertainty 

 

 The presence of uncertainty in a structure’s physical or geometrical property can 

be depicted by a closed interval. Considering q~  as a structure’s uncertain parameter:  

 
 ],[~ ulq =  (5.1) 

 
in which, l  and u  are the lower and upper bounds of the uncertain parameter, 

respectively.  
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5.2.1 Interval Stiffness Matrix 

 

 The structure’s deterministic global stiffness matrix can be viewed as a linear 

summation of the element contributions to the global stiffness matrix, 

  

 ∑
=

=
n

i

T
iii LKLK

1
]][][[][  (5.2) 

 
where, [ iL ] is the element Boolean connectivity matrix and ][ iK  is the element stiffness 

matrix in the global coordinate system (a geometric second-order tensor transformation 

may be required from the element local coordinates to the structure’s global coordinates). 

Considering the presence of uncertainty in the stiffness characteristics, the non-

deterministic element stiffness matrix is expressed as: 

 
 ]])[,([]~[ iiii KulK =  (5.3) 

 
in which ],[ ii ul  is an interval number that pre-multiplies the deterministic element 

stiffness matrix.  

 Considering the variation as a multiplier outside of the stiffness matrix preserves 

the element physical characteristics such as real natural frequencies and rigid body modes 

as well as stiffness matrix properties such as symmetry and positive semi-definiteness. In 

terms of the physics of the system, this means that the stiffness within each element is 

unknown but bounded and has a unique value that can independently vary from the 

stiffness of other elements.  
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 This parametric form must be used to preserve sharp interval bounds. The 

uncertainty in each element’s stiffness is assumed to be independent. For a substructure 

with an overall interval uncertainty, Eqs.(5.2,5.3) are used to assemble the substructure’s 

stiffness matrix.  

 For coupled elements, matrix decompositions can be used. For instance, in a 

beam-column, if functional independent values of axial and bending properties are 

uncertain, the axial and bending components can be additively decomposed as: 

 
 BendingiBendingiiAxialiAxialiii KulKulK ])[],([])[],([]~[ +=  (5.4) 

 
Likewise, for continuum problems with functional independent uncertain properties at 

integration points, the contribution of each integration point can be assembled 

independently. 

 

Interval Global Stiffness Matrix 

 
 The structure’s global stiffness matrix in the presence of any uncertainty is the 

linear summation of the contributions of non-deterministic interval element stiffness 

matrices: 

 ∑
=

=
n

i

T
iiiii LKulLK

1

]]}[])[,]{([[]~[  (5.5) 

or: ∑∑
==

==
n

i
iii

n

i

T
iiiii KulLKLulK

11
]])[,([]][][])[,([]~[  (5.6) 

 
in which ][ iK  is the deterministic element stiffness contribution to the global stiffness 

matrix.  
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5.2.2 Interval Mass Matrix 

 

 Similarly, the structure’s deterministic global mass matrix is viewed as a linear 

summation of the element contributions to the global mass matrix as: 

 

 ∑
=

=
n

i

T
iii LMLM

1
]][][[][  (5.7) 

 
where, ][ iM  is the element stiffness matrix in the global coordinate system.  

 Considering the presence of uncertainty in the mass properties, the non-

deterministic element mass matrix is:  

 
 ]])[,([]~[ iiii MulM =  (5.8) 

 
in which ],[ ii ul  is an interval number that pre-multiplies the deterministic element mass 

matrix. Considering the variation as a multiplier outside of the mass matrix preserves the 

element physical properties. Analogous to the interval stiffness matrix, this procedure 

preserves the physical and mathematical characteristics of the mass matrix. 

 The structure’s global mass matrix in the presence of any uncertainty is the linear 

summation of the contributions of non-deterministic interval element mass matrices: 

 

 ∑
=

=
n

i

T
iiiii LMulLM

1
]]}[])[,]{([[]~[  (5.9) 

or: ∑∑
==

==
n

i
iii

n

i

T
iiiii MulLMLulM

11
]])[,([]][][])[,([]~[  (5.10) 

 
in which ][ iM  is the deterministic element mass contribution to the global mass matrix.  
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CHAPTER VI 

 

BOUNDS ON NATURAL FREQUENCIES AND MODE SHAPES 

 

 

6.1 Interval Eigenvalue Problem 

 

 The eigenvalue problems for matrices containing interval values are known as the 

interval eigenvalue problems. Therefore, if ]~[A  is an interval real matrix )~( nnA ×ℜ∈  and 

][A  is a member of the interval matrix )~( AA∈  or in terms of components )~( ijij aa ∈ , the 

interval eigenvalue problem is shown as:  

 
 )~(,0}]){[]([ AAxIA ∈=− λ   (6.1) 

 

6.1.1 Solution for Eigenvalues 

 

 The solution of interest to the real interval eigenvalue problem for bounds on each 

eigenvalue is defined as an inclusive set of real values )~(λ  such that for any member of 

the interval matrix, the eigenvalue solution to the problem is a member of the solution 

set. Therefore, the solution to the interval eigenvalue problem for each eigenvalue can be 

mathematically expressed as: 

 
 }0}]){[]([:~|],[~{ =−∈∀=∈ xIAAAul λλλλλ  (6.2) 
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6.1.2 Solution for Eigenvectors 

 

 The solution of interest to the real interval eigenvalue problem for bounds on each 

eigenvector is defined as an inclusive set of real values of vector }~{x  such that for any 

member of the interval matrix, the eigenvector solution to the problem is a member of the 

solution set. Thus, the solution to the interval eigenvalue problem for each eigenvector is: 

 
 }0}]){[]([:,~|}~{}{{ =−∈∀∈ xIAAAxx λλ  (6.3) 

 

6.2 Interval Eigenvalue Problem for Structural Dynamics 

 

 For dynamics problems, the interval generalized eigenvalue problem between the 

interval stiffness and mass matrices can be set up by substituting the interval global 

stiffness and mass matrices, Eq.(5.6,5.10), into Eq.(2.11). Therefore, the non-

deterministic interval eigenvalue problem is obtained as: 

 

 }~){]])[,([)~(}~){]])[,([(
1

2

1

ϕωϕ ∑∑
==

=
n

i
iii

n

i
iii MulKul  (6.4) 

 
 Hence, determination of bounds on natural frequencies in the presence of 

uncertainty can be mathematically interpreted as performing an interval eigenvalue 

problem on the interval-set-represented non-deterministic stiffness and mass matrices. 

Two solutions of interest are: 

 
)~(ω : Interval natural frequencies or bounds on variation of circular natural frequencies. 

}~{ϕ : Interval mode shapes or bounds on directional deviation of mode shapes.  
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 While the element mass matrix contribution can also have interval uncertainty, in 

this work only problems with interval stiffness properties are addressed. However, for 

functional independent variations for both mass and stiffness matrices, the extension of 

the proposed work is straightforward. 

 

6.2.1 Transformation of Interval to Perturbation in Eigenvalue Problem 

 

 The interval eigenvalue problem for a structure’s with stiffness properties 

expressed as interval values is: 

 

 }~){([)~(}~){]])[,([(
1

2

1
ϕωϕ ∑∑

==

=
n

i

n

i
iii MKul  (6.5) 

 
This interval eigenvalue problem can be transformed to a pseudo-deterministic 

eigenvalue problem subjected to a matrix perturbation. Introducing the central and radial 

(perturbation) stiffness matrices as: 

 

 ∑
=

+
=

n

i
i

ii
C K

ul
K

1
])[

2
(][  (6.6) 

 ∑
=

−
=

n

i
i

ii
iR K

lu
K

1

])[
2

)((]~[ ε    ,    ]1,1[−=iε               (6.7) 

 
Using Eqs. (6.6,6.7), the non-deterministic interval eigenpair problem, Eq.(6.5),  

becomes:  

 }~]{)[~(}~]){~[]([ 2 ϕωϕ MKK RC =+  (6.8) 
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 Hence, the determination of bounds on natural frequencies and bounds on mode 

shapes of a system in the presence of uncertainty in the stiffness properties is 

mathematically interpreted as an eigenvalue problem on a central stiffness matrix ( ][ CK ) 

that is subjected to a radial perturbation stiffness matrix ( ]~[ RK ). This perturbation is in 

fact, a linear summation of non-negative definite deterministic element stiffness 

contribution matrices that are scaled with bounded real numbers )( iε .  

 

6.3 Bounding the Natural Frequencies 

 

6.3.1 Eigenvalue Perturbation Considerations 

 

 A real symmetric matrix subjected to an arbitrary perturbation can produce 

complex conjugate eigenvalues and therefore, the bounds on eigenvalues are then in the 

complex domain. However, since the stiffness and mass matrices governing the structural 

behavior are symmetric, the natural frequencies of the structure are always real. To retain 

correct physical results, constraints must be imposed on the non-deterministic eigenvalue 

problem. These constraints are intrinsically present in the non-deterministic eigenpair 

problem. These constraints result in a radial perturbation matrix ( ]~[ RK ) which is a linear 

combination of non-negative definite matrices that are scaled by bounded real numbers. 

Therefore, this characteristic of the radial perturbation matrix must be considered in the 

development of any scheme to bound the natural frequencies. 
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6.3.2 Determination of Eigenvalue Bounds (Interval Natural Frequencies) 

 

 Using the concepts of minimum and maximin characterizations of eigenvalues for 

symmetric matrices, Eqs.(4.7,4.12), the solution to the generalized interval eigenvalue 

problem for the vibration of a structure with uncertainty in the stiffness characteristics, 

Eq.(6.8), is shown as: 

 

For the first eigenvalue: 

 

 )
}]{[}{
}]{~[}{

}]{[}{
}]{[}{

(min)
}]{[}{

}]{~[}{
(min)~(~

1 xMx
xKx

xMx
xKx

xMx
xKKx

KK T
R

T

T
C

T

RxT
RC

T

Rx
RC nn

+=
+

=+
∈∈

λ  

 (6.9) 

For the next eigenvalues: 

 

 

)]
}]{[}{
}]{~[}{

}]{[}{
}]{[}{

(minmax[

]
}]{[}{

}]{~[}{
minmax[)~(~

1,...,1,0

1,...,1,0

xMx
xKx

xMx
xKx

xMx
xKKx
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T
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T
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T
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T
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RCk
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T

i
T

+

=
+

=+

−==

−==
λ

 (6.10) 

  

Substituting and expanding the right-hand side terms of Eqs. (6.9,6.10): 

 

=+ )
}]{[}{
}]{~[}{

}]{[}{
}]{[}{

(
xMx
xKx

xMx
xKx

T
R

T

T
C

T

 

(6.11) 

 )
}]{[}{
}]{[}{

)(
2

)(()
}]{[}{
}]{[}{

)(
2

(
11 xMx

xKxlu
xMx
xKxul

T
i

Tn

i

ii
i

n

i
T

i
T

ii ∑∑
==

−
+

+
ε   
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 Since the matrix ][ iK  is non-negative definite, the term )
}]{[}{
}]{[}{

(
xMx
xKx

T
i

T

 is non-

negative. Therefore, based on the monotonic behavior of eigenvalues for symmetric 

matrices, Eqs.(4.17,4.18) the upper bounds on the eigenvalues in Eqs.(6.9,6.10) are 

obtained by considering maximum values of interval coefficients of uncertainty 

])1,1[( −=iε , )1)(( max =iε , for all elements in the radial perturbation matrix. Similarly, 

the lower bounds on the eigenvalues are obtained by considering minimum values of 

those coefficients, )1)(( min −=iε , for all elements in the radial perturbation matrix. Also, 

it can be observed that any other element stiffness selected from the interval set will yield 

eigenvalues between the upper and lower bounds. 

 Hence, the bounds on the eigenvalues of the perturbed matrix are obtained as: 

 

)])[(())])[
2

)()((])[
2

(()]~(~max[
11
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1

∑∑∑
===

=
−

+
+

=+
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i
iik
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i
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ii
kRCk KuKluKulKK λελλ  

(6.12) 
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)()((])[
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∑∑∑
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=
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+
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=+
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i
iik

n

i
i

ii
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n

i
i

ii
kRCk KlKluKulKK λελλ    

(6.13) 

 
 Therefore, the deterministic eigenvalue problems corresponding to the maximum 

and minimum natural frequencies are obtained as:  

 

 }]{)[(}){])[(( 2
max

1
ϕωϕ MKu

n

i
ii =∑

=

 (6.14) 

 }]{)[(}){])[(( 2
min

1

ϕωϕ MKl
n

i
ii =∑

=

 (6.15) 



 68 
 

 This means that in the presence of any interval uncertainty in the stiffness of 

structural elements, the exact upper bounds of natural frequencies are obtained by using 

the upper values of stiffness for all elements in a deterministic generalized eigenvalue 

problem. Similarly, the exact lower bounds of natural frequencies are obtained by using 

the lower values of stiffness for all elements in another deterministic generalized 

eigenvalue problem. 

 

6.4 Bounding the Mode Shapes 

 

6.4.1 Determination of Eigenvector Bounds (Interval Mode Shapes) 

 

 The perturbed generalized eigenvalue problem for structural dynamics, Eq.(6.8) 

can be transformed to a perturbed classic eigenpair problem as:  

 

 }~){~(}~){]][~[][]][[]([ 22
1

2
1

2
1

2
1

ϕωϕ =+
−−−−

MKMMKM RC  (6.16) 

 
hence, the symmetric perturbation matrix is: 

 

 2
1

2
1

]][~[][][
−−

= MKME R  (6.17) 

 
Substituting for radial stiffness ]~[ RK , Eq.(6.7), in Eq.(6.17), the error matrix becomes: 

 

 2
1

1

2
1

][]))[
2

)(((][][
−

=

−

∑ −
= MKluME

n

i
i

ii
iε  (6.18) 
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 Using the obtained error matrix in eigenvector perturbation equation for the first 

eigenvector, Eq.(4.44) yield the dynamic perturbed mode shape as:  

 

}){])[])[
2

)(((])([][])[][](([}{}~{ 1
2
1

1

2
1

2
1

21211 ϕεωϕϕ
−

=

−− ∑ −
ΦΩ−Φ+= MK

lu
MI

n

i
i

ii
i

T  

(6.19) 

 
in which, }{ 1ϕ is the first mode shape, )( 1ω  is the first natural circular frequency, ][ 2Φ  is 

the matrix of remaining mode shapes and ][ 2Ω  is the diagonal matrix of remaining 

natural circular frequencies obtained from the unperturbed eigenvalue problem. 

 

 Moreover, Eq.(6.19) can be written as: 

 

 }{]))[(]([}{}~{ 1
1

111 ϕεϕϕ ∑
=

+=
n

i
ii EC  (6.20) 

 

in which: TIC ][])[][]([][ 2
1

2121 ΦΩ−Φ= −ω  and niMKMluE i
ii

i ,...,1,]][[])[
2

(][ 2
1

2
1

=
−

=
−−

. 

 
 
Simplifying Eq.(6.20),the interval mode shape is: 

 

 }){]))[(]([]([}~{ 1
1

11 ϕεϕ ∑
=

+=
n

i
ii ECI  (6.21) 

 
For the other mode shapes, the same procedure can be used.  
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CHAPTERVII 

 

BOUNDING DYNAMIC RESPONSE 

 

 

7.1 Maximum Modal Coordinate 

 

 The interval modal coordinate nD~  is determined using the excitation response 

spectrum evaluated for the corresponding interval of natural circular frequency nω~  and 

assumed modal damping ratio (Figure (9)). 

 

Figure (9): Determination of nD~ corresponding to a nω~  for a  
generic response spectrum 

 

 Having the interval modal coordinate, the maximum (upperbound) modal 

coordinate max,nD  is determined as: 

 

 )~max(max, nn DD =  (7.1) 
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7.2 Interval Modal Participation Factor 

 

 If excitation is proportional, the interval modal participation factor is obtained as: 

 

 
}~]{[}~{

}{}~{}{}~{~
n

T
n

T
n

n

T
n

n M
P

M
P

ϕϕ
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==Γ  (7.2) 

 

7.3 Maximum Modal Response 

 

 The maximum modal response is determined as the maximum of the product of 

the  maximum modal coordinate, the interval modal participation factor and the interval 

mode shape as: 

 ( )}~){~)((max}{ max,max, nnnn DU ϕΓ=  (7.3) 

 
 To achieve sharper results, functional dependency of intervals in the 

multiplicative terms must be considered. Maximum modal response, Eq.(7.3), is 

expanded using the definitions of the interval mode shapes and the interval modal 

participation factor, Eqs.(6.21,7.2) as: 

 

}]{
}{])][][][][)[)(((}{}]){][][)[((}{

]][})[]{][[})({)(((]})[]{][[})({((

}{])][][)[((}{}]{[}{

]][})[{})({((]}[{}{
)max[(}{

1 1 1

1 1 1

1

1
max,max,

n

n

N

i

N

i

N

j
jninji

T
nnini

T
n

N

i

N

i

N

j
innin

T
jinin

T
i

n

N

i
ini

T
nn

T
n

N

i
inn

T
in

T

nn

ECMECMEC

ECECPIECP

ECMM

ECPIP
DU

ϕ
ϕεεϕϕεϕ

ϕεεϕε

ϕεϕϕϕ

ϕεϕ

∑ ∑∑

∑ ∑∑

∑

∑

= = =

= = =

=

=

+

+

++

++
= L

 (7.4) 



 72 
 

Thus, considering the dependency of the intervals of uncertainty for each element, )( iε , 

the sharper results for maximum modal response are obtained. 

 

7.4 Maximum Total Responses 

 

 Finally, the contributions of all maximum modal responses are combined to 

determine the maximum total response using SRSS or other combination methods. 

 

 ∑
=

=
N

n
nUU

1

2
max,max }{}{  (7.5) 

 
7.5 Summary 

 

 The interval response spectrum analysis (IRSA) is summarized as following: 

 

1. Define the uncertain physical or geometrical characteristics with closed intervals. 

• Determine the interval stiffness matrix ]~[K  and interval mass matrix ]~[M . 

• Assume the modal damping ratio nζ . 

2. Perform an interval eigenvalue problem between the interval stiffness and interval 

mass matrices. 

• Determine the bounds on natural circular frequencies nω~  (interval natural 

frequencies). 

• Determine the bounds on mode shapes }~{ nϕ (interval mode shapes). 
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3. Compute the maximum modal response. 

• Determine the interval modal coordinate nD~ and the maximum modal coordinate 

max,nD  using the excitation response spectrum for the bounds of corresponding 

natural circular frequency and assumed modal damping ratio. 

•  Determine the interval modal participation factor nΓ
~ . 

• Compute the maximum modal response as the product of the maximum modal 

coordinate, the interval modal participation factor and the interval mode shape. 

4. Combine the contributions of all maximum modal responses to determine the 

maximum total reponse using SRSS or other combination methods. 
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CHAPTER VIII 

 

NUMERICAL EXAMPLES AND BEHAVIOR OF IRSA METHOD 

 

 

 In this section, the numerical behavior of the IRSA algorithm will be investigated. 

The computational complexity associated with the behavior will be explored as well as 

overestimation of interval bounds introduced by the algorithm.  

 The loss of sharpness as a function of initial interval width will be studied from 

several example problems.  

 In addition, the effect of problem size on the interval estimation will be explored 

and each step in the three step IRSA method (bounds on natural frequencies, mode 

shapes and response) will be studied. 

 

8.1 Examples for Bounds on Natural Frequencies 

 

 The first step in IRSA method is the construction of interval bounds on the natural 

frequencies of a structure or a finite element mesh. The following problems obtains the 

bounds on natural frequencies for different systems. 
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Problem 8.1.1 

 
 As the first problem, the bounds on the natural frequencies for a 2D three-element 

truss with interval uncertainty present in the modulus of elasticity of each element are 

determined (Figure (10)). 

 

Figure (10):  Equilateral truss with material uncertainty  

 

 Using the structural stiffness, the lumped mass matrices and the intervals of 

material uncertainty as: 
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the deterministic eigenvalue problems for maximum and minimum natural frequencies, 

Eqs.(6.14) and (6.15), become: 
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The eigenvalue problems are solved using MATLAB (which uses the transformation to 

Hessenberg form then finds the eigenvalues and eigenvectors by QR method) The results 

are summarized in Table (1).     

 

 

Table (1): Bounds and central values on non-dimensional frequencies for problem 8.1.1 

 

 

 

 

 

 
Lower 
Bound 

 
 

)(L  

 
Upper 
Bound 

 
 

)(U  

 
Central 
Values 

 

)
2

( ULC +
=

 

 
Radial 
Values 

 
 

)( CUR −=
 

 
Relative 

Uncertainty 
 

)(
C
R  

ρ
ω

/
1

E
L  

 
0.5661 

 
0.6964 

 
0.6313 

 
0.0651 

 
0.1032 

ρ
ω

/
2

E
L  

 
0.8910 

 
1.0936 

 
0.9923 

 
0.1013 

 
0.1021 

ρ
ω

/
3

E
L

 
 

1.2188 
 

1.4897 
 

1.3543 
 

0.1354 
 

0.1000 



 77 
 

 For comparison, this problem is solved using the combinatorial analysis (lower 

and upper values of uncertainty for each element), i.e., solving ( 822 3 ==n ) possible 

limit state deterministic problems. The results are shown in Table (2): 
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ρ
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/
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E
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0.6049 

 
0.6128 

 
0.6685 

 
0.5766 

 
0.6176 

 
0.6310 

 
0.6964 

ρ
ω

/
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E
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0.8910 

 
0.8956 

 
1.0289 

 
1.0433 

 
0.9326 

 
0.9487 

 
1.0899 

 
1.0936 

ρ
ω

/
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E
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1.2188 
 

1.3900 
 

1.3289 
 

1.4713 
 

1.2641 
 

1.4208 
 

1.3468 
 

1.4897 

 

Table (2): Combination solution for problem 8.1.1 

 

 The results obtained by a brute force combination solution yields the same bounds 

as those obtained by the bounding method of the present work. While all combinations of 

endpoints do not necessarily provide the extreme values to a general interval problem, 

based on the results proved in section 6.2.3, this problem is expected to all be bounded by 

the all lower and all upper values of stiffness. 
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Problem 8.2.2 

 
 The second example problem solves the problem cited in the paper by Qiu, Chen 

and Elishakoff (1995) using the exact bounding method of the present work. The 

structure in the problem is a spring-mass system with fixed supports at both ends with 

interval uncertainty in the elements’ stiffness (Figure (11)).  

 

Figure (11):  The system of multi-DOF spring-mass system  

 

 The central and radial stiffness and central mass matrices given in their work are 

as following: 
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 Having the problem input information, the individual element interval stiffness 

matrices )/( mN  are back-calculated as:  

 
 

 

 
The eigenvalue problem is solved using the method presented in this work and the results 

for eigevalues )sec/1( 2 are summarized in Table (3). 

 

 

 

 

 

 

 

 

 

 
Table (3): Solution of the example problem 8.1.2 using the present method 
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Comparison 

 
 The results obtained for problem 8.1.2, using the present method, are compared 

with the results obtained by Qiu, Chen and Elishakoff (1995) and also with the results 

obtained by using Dief’s method also presented in their paper; Tables (4,5) . 

 
 

 

 

 

 

 

 

 

 
Table (4): Results for problem 8.1.2 by Qiu, Chen and Elishakoff’s method 

 
 

 

 

 

 

 

 

 
 

Table (5): Results for problem 8.1.2 by Dief’s method 

 
 
 

 
Lower 
Bound 

 

 
Upper 
Bound 

 
Central 
Values 

 
Radial 
Values 

 
Relative 

Uncertainty

 

1
~λ  

 
826.74 

 

 
983.59 

 
905.16 

 
78.42 

 
0.08664 

 

2
~λ  

 
3331.16 

 
3448.53 

 
3389.85 

 
58.69 

 
0.01731 

 

3
~λ  

 
7000.19 

 
7128.72 

 
7064.46 

 
64.26 

 
0.00910 

 

4
~λ  

 
12588.29 

 
12692.77 

 
12640.53 

 
52.24 

 
0.00413 
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Bound 
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Bound 

 
Central 
Values 

 
Radial 
Values 

 
Relative 

Uncertainty

 

1
~λ  

 
842.93 

 
967.11 

 
905.02 

 
62.09 

 
0.06860 

 

2
~λ  

 
3364.69 

 
3415.01 

 
3389.85 

 
25.16 

 
0.00742 

 
3

~λ  
 

7031.49 
 

7097.54 
 

7064.52 
 

33.02 
 

0.00467 

 

4
~λ  

 
12560.84 

 
12720.23 

 
12640.53 

 
79.69 

 
0.00630 
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Discussion 

 
 The results by Qiu, Chen and Elishakoff (1995) are wider than the present results 

for lower eigenvalues, however, for higher eigenvalues, their method does not include the 

whole range of uncertainty. This underestimation is perhaps due to the usage the non-

perturbed eigenvectors to obtain the bounds on eigenvalues.  

 Using Dief’s method, the lower eigenvalues have a wider range of uncertainty 

than the present exact results. At high frequencies, Dief’s method provides better bounds. 

However, all of the bounds provided by Dief’s method contain the correct values. 
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Problem 8.1.3 

 
 The third example problem solves a problem cited in the paper by Qiu, Chen and 

Elishakoff (1996) using the exact bounding method of the present work. The structure in 

the problem is a 2-D truss with 15 elements and 8 nodes and therefore 13 degrees of 

active freedom (Figure (12)).  

 

Figure (12):  The structure of 2-D truss from Qiu, Chen and Elishakoff (1996) 

 

 The cross-sectional area 22 )1012.0( mA −×= , mass density 3/)7800( mkg=ρ , the 

length for horizontal and vertical members mL )1(= , the Young’s moduli E of elements 

1, 2, 7, 12, 14 and 15 are 21212 /]1021.0,10205.0[~ mkgE ××=  and the Young’s moduli 

E of remaining elements are 212 /)1021.0( mkgE ×= .The eigenvalue problem is solved 

using the method presented in this work and the results are summarized in Table (6). 
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Table (6): Solution of the problem 8.1.3 using the present method 

 

Comparison 

 
 The results obtained for problem 8.1.3, using the present method, are compared 

with the results obtained by Qiu, Chen and Elishakoff (1996); Table (7). 

 
 
 

 
Lower 
Bound 

 
Upper 
Bound 

 
Central 
Values 

 
Radial 
Values 

 
Relative 

Uncertainty 

 

1
~λ  

 
410329.55 

 
418099.26 

 
414214.41 

 
3884.86 

 
0.00937 

 

2
~λ  

 
1592958.89 

 
1621645.84 

 
1607302.36 

 
14343.47 

 
0.00892 

 

3
~λ  

 
3380649.13 

 
3446470.42 

 
3413559.78 

 
32910.64 

 
0.00964 

 

4
~λ  

 
9436746.63 

 
9516020.31 

 
9476383.47 

 
39636.84 

 
0.00418 

 

5
~λ  

 
11957568.67 

 
12067866.95

 
12012717.81

 
55149.14 

 
0.00459 

 
6

~λ  
 

17254948.92 
 

17324898.31
 

17289923.62
 

34974.69 
 

0.00202 

 

7
~λ  

 
20547852.45 

 
20683224.80

 
20615538.62

 
67686.18 

 
0.00328 

 
8

~λ  
 

23940621.60 
 

24062601.45
 

24001611.53
 

60989.93 
 

0.00254 

 

9
~λ  

 
27701931.90 

 
27895172.99

 
27798552.45

 
96620.55 

 
0.00347 

 

10
~λ  

 
33176698.83 

 
33463456.95

 
33320077.89

 
143379.06 

 
0.00430 

 

11
~λ  

 
34661905.48 

 
34774286.11

 
34718095.80

 
56190.31 

 
0.00161 

 

12
~λ  

 
40545118.46 

 
41083946.08

 
40814532.27

 
269413.81 

 
0.00660 

 

13
~λ  

 
51039044.05 

 
51984663.08

 
51511853.57

 
472809.52 

 
0.00917 
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Table (7): Results for problem 8.1.3 by Qiu, Chen and Elishakoff’s method 

 

 The results for eigenvalues by Qiu, Chen and (1996) for this problem are 

considerably wider than the exact results. This is most likely because of the existence of 

interval variation inside the stiffness matrix.  

 
 
 

 
Lower 
Bound 

 
Upper 
Bound 

 
Central 
Values 

 
Radial 
Values 

 
Relative 

Uncertainty 

 

1
~λ  

 
542417.73 

 
795982.85 

 
669200.29 

 
126782.56 

 
0.18945 

 

2
~λ  

 
3203694.23 

 
4208370.82 

 
3706032.52 

 
502338.30 

 
0.13554 

 

3
~λ  

 
8721084.46 

 
8894594.90 

 
8807839.68 

 
86755.22 

 
0.00984 

 

4
~λ  

 
31372412.08 

 
31654701.48 

 
31513556.78 

 
141144.70 

 
0.00447 

 

5
~λ  

 
39003717.83 

 
40388685.94 

 
39696201.89 

 
692484.06 

 
0.01744 

 
6

~λ  
 

66975792.75 
 

68101719.10 
 

67538755.92 
 

562963.18 
 

0.00833 

 

7
~λ  

 
93652364.04 

 
94239659.52 

 
93946011.78 

 
293647.74 

 
0.00312 

 
8

~λ  
 

96645340.33 
 

96958075.71 
 

96801708.02 
 

156367.69 
 

0.00161 

 

9
~λ  

 
115951854.04 

 
116877798.08

 
116414826.06

 
462972.02 

 
0.00397 

 

10
~λ  

 
260355285.47 

 
260610332.81

 
260482809.14

 
127523.67 

 
0.00048 

 

11
~λ  

 
480056020.21 

 
480296042.27

 
480176031.24

 
120011.03 

 
0.00024 

 

12
~λ  

 
689418207.62 

 
689873019.61

 
689645613.62

 
227405.99 

 
0.00032 

 

13
~λ  

 
818939575.16 

 
819293177.24

 
819116376.20

 
176801.04 

 
0.00021 
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 In the eigenvalue step in the IRSA, the computational effort is twice than that 

required for deterministic analysis. Directional rounding could be used to provide bounds 

that include the impact of truncation errors.  

 The additional cost of a true “all interval” method would depend on the computer 

hardware and the specific method to calculate eigenvalues. In the first step of the IRSA 

method, only the effects of problem size and initial interval widths determine the 

behavior of the underlying eigenvalue method. Any interval overestimation will be 

caused by other steps in the algorithm. 
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8.2 Examples for Bounds on Dynamics Response 

 

Problem 8.2.1 

 
 This example obtains the bounds on dynamic responses for a spring-mass system 

with fixed supports at both ends with interval uncertainty in the elements’ stiffness 

(Figure (13)).  

 

 

 

Figure (13): The structure of multi-DOF spring-mass system  

 

The individual element interval stiffness matrices are:  
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⎦
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The system’s stiffness mass matrix is: 

mdiagM )1,1,1(=  

 

The excitation is in the form of a suddenly applied proportional constant load as: 
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The response spectrum for this proportional loading is shown in Figure (14). 

 

 

Figure (14): Response spectrum for an external excitation  

 
 
The problem is solved using the method of interval response spectrum analysis presented 

in this work and the results are shown in Table (8). For comparison, this problem is 

solved with two alternate methods: 

 

• Combinatorial analysis: Solution to 6422 4 ==n  deterministic problems  

• Monte-Carlo simulation: Performing 710  simulations using independent 

uniformly distributed random variables. 

 

Also, the convergence behavior of Monte-Carlo simulation for the displacement of the 

first node is depicted in Figure(15). 
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The results for nodal displacements are summarized in Table (8). 

 

  
IRSA 

 
Combination 

 

 
Simulation 

 
max,1U  

 
1.7993 

 
1.7493 

 
1.7491 

 
max,2U
 

 
2.4997 

 
2.4577 

 
2.4575 

 
max,3U
 

 
1.7993 

 
1.7493 

 
1.7493 

 
Table (8): Solution to the problem 8.2.1 

 
 

 
 

Figure (15): Convergence of Monte-Carlo simulation 
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Method behavior observations 

 

 Problem 8.2.1 is redefined in different ways and solved using IRSA in order to 

investigate the behavior of the algorithm on following: 

 

Computation time: 

 Three problems similar to problem 8.2.1 with 3, 4 and 5 DOF using IRSA method 

and the elapsed time for each problem is recorded and shown in Table (9) and plotted in 

logarithmic scale in Figure (16).  
 

DOF Elapsed Time (sec) 

3 0.797 

5 1.452 

6 1.797 
 

Table (9): Computation time of IRSA method for problem 8.2.1  

 

 

Figure (16): Computation time for IRSA method 



 90 
 

 The slope of the digram in Figure (15) is about “1.2”. This means that 

computation time for this problem using IRSA method increases between linear to 

quadratic with increasing the number of DOF. 

 

Output width as a function of initial width: 

 Problem 8.2.1 is solved with different input variations in elements’ stiffness and 

the results are compared with the combinatorial solution. The overestimation in IRSA 

method is depicted in Figure (17). 

 

Figure (17): Comparison of output variation for IRSA method  

with combinatorial solution versus input variation 

 

This shows a linear increase in overestimation of output results for IRSA method 

compared to the combinatorial solution.  

 



 91 
 

Problem 8.2.2 

 
This example problem solves for the dynamic response a 2-D cross-braced truss system 

with uncertainty in the modulus of elasticity subjected to an earthquake excitation (Figure 

(18)). 

 
 

Figure (18):  The structure of 2-D cross-braced truss  

 

 The cross-sectional area 2.10inA = , floor load: 2./120.0 inkip , the length for 

horizontal and vertical members ftL )12(= , the Young’s moduli E for all elements are 

ksiE 29000]01.1,99.0[~ =  and modal damping is 02.0=ζ . 

 
 The Newmark Blume Kapur (NBK) design spectra Figure, (2), are used to obtain 

modal coordinates. The problem is solved using the method of interval response spectrum 

analysis and the results are shown in Table (10). For comparison, this problem is solved 

with two alternate methods: 
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• Combinatorial analysis: Solution to 102422 10 ==n  deterministic problems  

• Monte-Carlo simulation: Performing 410  simulations using independent 

uniformly distributed random variables. 

 

The results for roof lateral displacements ( .in ) are summarized in Table (10). 

 

  
IRSA 

 

 
Combination 

 

 
Simulation 

 
 
maxU  

 
0.8294 

 
0.8103 

 
0.8103 

 
 

Table (10): Solution to the problem 8.2.2 

 

Observation 

 

Output width as a function of problem size: 

 

Comparing the results obtained by problems 8.2.1 and 8.2.2 shows that the 

overestimation of IRSA method in output results does not increase with increasing the 

number of elements and DOF. 
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CHAPTER IX 

 

CONCLUSIONS 

 

 

• A finite-element based method for dynamic analysis of structures with interval 

uncertainty in structure’s stiffness or mass properties is presented.  

• In the presence of any interval uncertainty in the characteristics of structural 

elements, the proposed method of interval response spectrum analysis (IRSA) is 

capable to obtain the nearly sharp bounds on the structure’s dynamic response.  

• IRSA is computationally feasible and it shows that the bounds on the dynamic 

response can be obtained without combinatorial or Monte-Carlo simulation 

procedures. 

• The solutions to only two non-interval eigenvalue problems are sufficient to bound 

the natural frequencies of the structure. Based on the given mathematical proof, the 

obtained bounds on natural frequencies are exact and sharp. 

• Computation time for the algorithm increases between linear to quadratic with 

increasing the number of degrees of freedom. 

• Some conservative overestimation in dynamic response occurs because of 

linearization in formation of bounds of mode shapes and also, the dependency of 

intervals in the dynamic response formulation. These are the expected cause of loss of 

sharpness in the interval results.  
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• The overestimation of output results for IRSA method linearly increases with 

increasing the number of degrees of freedom in comparison with the combinatorial 

solution.  

• The solution of the solved problems for dynamic response indicates that the output 

overestimation does not increase as the problem size increases. 

• The computational efficiency of the proposed method makes IRSA an attractive 

method to introduce uncertainty into dynamic analysis. 
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