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Center for Reliable Engineering 
Computing (REC)

We handle computations with care
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Why do engineers calculate?

To gain information useful to design

Information –

⎥
⎦

⎤
⎢
⎣

⎡
=

received message beforeevent  ofy Probabilit
received messageafter event  ofy ProbabilitlogI

Definition from Stanford Goldman “Information Theory” Prentice-Hall 1953. 
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What information is provided by a 
finite element analysis?

What is the 
probability 
that the nth

mode of the 
Centar is 
.324571447
Hz?
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Information provided by FEM

⎥
⎦

⎤
⎢
⎣

⎡
=

ncalculatio beforeevent  ofy Probabilit
calulationafter event  ofy ProbabilitlogI

⎥
⎦

⎤
⎢
⎣

⎡
=

p
pI log

∞=== - Ior     0Ior   ? I
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Historical Considerations

.30  and .3 are 
not the 
same answer
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On Computations

Numerical computations required in the 
mechanics of materials should be 
performed so the the precision of the 
results fairly corresponds with the 
precision of the data. 
The values of the ultimate strength given 
in the preceding tables are indefinite in the 
second significant figure.
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Significant Figures

Represent information as well as limits to 
knowledge. 

Reduced computational cost.

Better representation of limits to knowledge is 
the use of probability but how does one pick a 
probability density function?



Presentation – Tufts University  November 29, 2007

Modern Engineering 
Computations

Significant figures is 1930s technology.

What should we be doing to address the 
reliability of engineering computations in 
the future?
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Sources of unreliability in 
engineering analysis

Errors in model representing the physics

Errors in parameters used in model

Errors in discretization of a model

Errors in computations ( ie. truncation errors)
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Impact of uncertainty in
engineering analysis

A Patriot Missile 
Killed 28 and Injured 
>100 (GAO/IMTEC-92-26)

The failure of the 
Sleipner A offshore 
platform, August  23, 
1991 
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Impact of uncertainty in 
engineering analysis 

The Patriot battery at Dhahran failed to track 
and intercept the Scud missile because of a 
software problem in the system's weapons 
control computer. This problem led to an 
inaccurate tracking calculation that became 
worse the longer the system operated. At the 
time of the incident, the battery had been 
operating continuously for over 100 hours. By 
then, the inaccuracy was serious enough to 
cause the system to look in the wrong place for 
the incoming Scud. 
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Impact – Sleipner Failure 

The conclusion of the investigation was 
that the loss was caused by a failure in a 
cell wall, resulting in a serious crack and a 
leakage that the pumps were not able to 
cope with. The wall failed as a result of a 
combination of a serious error in the finite 
element analysis and insufficient 
anchorage of the reinforcement in a critical 
zone. 
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Impact – Sleipner Failure

the failure caused a seismic event 
registering 3.0 on the Richter scale, 
and left nothing but a pile of  debris at 
220m of depth. The failure involved a 
total economic loss of about $700 
million. 
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More examples

From Ivo Babuška and R. Tempone Proceedings of 
REC-2006

The Columbia Space Shuttle accident caused by a piece of 
foam broken off the fuel tank. After the hit was observed 
the potential damage was computationally judged non-
serious. 
Reason: The used model was based on the effect of 
small meteorites and not on a large piece of foam.

Loss of Mars Climate Orbiter:
Reason: Unintended mixture of English and metric units.
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Even more examples

Tacoma Narrows Bridge: The first Suspension Bridge Across Puget-Sound 
(Washington State) collapsed Nov. 7th1940.
Reason: Incorrect Model –Not respecting aerodynamic forces. (Effect of 
von Kármánvortices)

Collapsed roof of The Hartford Civic Center Jan. 18th1978.
Reason: Linear model and model of the joints was not adequate.

Collapsed roof in Katowice(Poland) Jan. 28th2006, 65 dead. 
Reason: Design was not adjusted for heavy snow and avoiding total 
collapse.

Also see the work of Norm Delatte and Paul Bosela - Engineering 
Forensics (NSF workshop CSU June 2005)
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GOAL

Develop tools to allow uncertainty in an 
engineering analysis to be computed with:
1) Limited Information on defining 
parameters
2) Computationally efficient (not solutions 
to Kolmorgorov type equations).
3) Integrate Verification and Validation 
errors.
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OutlineOutline
COMPUTING ON SETS: Random Sets, Fuzzy Sets, Convex Sets, COMPUTING ON SETS: Random Sets, Fuzzy Sets, Convex Sets, 
Clouds, Probability BoxesClouds, Probability Boxes
Interval Operations
Examples of progress in Reliable Engineering Analysis
Validation Errors:
Errors in representing the physics
Errors in parameters used in model
Interval Finite Elements
Verification Errors
Errors in discretization of model
Errors in computations (truncation errors)
Interval Boundary Elements
Conclusions
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Computation on sets

Probability theory.
(measure on Borel sets)

Fuzzy Sets
(membership function)

Random Sets  - Rough sets
Convex Sets (strict Zermelo-Fraenkel base theory)
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Computing on sets

Closed sets on real numbers - Interval Sets

Interval number represents a range of possible 
values within a closed set

}~|~{:],[ ulul xxxRxxxx ≤≤∈=≡
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r =1

Archimedes (287 − 212 B.C.)
 Α circle of radius one has 

an area equal to  π 

3
10

71
3

1

7
< <π

r=1

 2 < π < 4

π = [3.14085, 3.14286]

Interval arithmetic Interval arithmetic –– BackgroundBackground



Presentation – Tufts University  November 29, 2007

Modern interval arithmetic
Physical constants or measurements
g ∈ [9.8045, 9.8082]

Representation of numbers
1/3 ≈ 0.33333 √2 ≈  1.4142 π  ≈  3.1416
1/3 ∈ [0.33333, 0.33334] √2 ∈ [1.4142, 1.4143] π ∈ [3.1414, 3.1416]

Rounding errors
1/0.12345 ≈ 8.1004       1/0.12345  ∈ [8.1004, 8.1005]

R. E. Moore,  E. Hansen ,  A. Neumaier,  G. Alefed,  J. Herzberger

Interval arithmetic Interval arithmetic –– BackgroundBackground
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Intervals as a
Measure of Uncertainty

Interval construction of fuzzy set membership 
functions
Convex Sets 
Intervals as a set of all bounded probability 
density functions
Intervals as a set of all bounded, symmetric, 
non- increasing from mid-point Probability 
density functions (Lagoa and Barmish 2001)
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Intervals as α-cut for fuzzy set 
membership functions

 

x
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Intervals as a
Measure of Uncertainty (2)

Dempster-Shafer evidence theory
Random set theory
Probability Boxes (P-Box) analysis
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Computing on Sets

Imprecise Probabilities
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Figure from Scott Ferson and Vladik Kreinovich-REC 2006
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Interval Representation of P-
boxes
Interval bounds on an cumulative 

distribution function
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Computational Justification

Conventional probability requires a 
function for each uncertain variables. 
(Problems grow in dimension).  Current 
record for solution of White noise loading 
on a structure system with limit states is 5 
nodes. (see work of Larry Bergman at 
Illinois on Fokker-Plank equation)

Wojtkiewicz, Johnson, Bergman, Grigoriu Spencer
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Errors in computations (truncation errors)
Interval Boundary Elements
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Uncertainty can be represented as interval, if the 
length of a body l = 10 ± 0.25 the interval 
representation is

Interval number represents a range of possible 
values within a closed set

Interval RepresentationInterval Representation

}~|~{:],[ ulul xxxRxxxx ≤≤∈=≡

]10.25,9.75[=l
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Interval Vectors and Matrices
An interval matrix is such matrix that 
contains all real matrices whose elements 
are obtained from all possible values 
between the lower and upper bounds of 
its interval components 

Interval vectors and matricesInterval vectors and matrices

},...,  ;,...,for   ~  |  ~{   n1jm1iAARAA ijij
nm ==∈∈= ×



Presentation – Tufts University  November 29, 2007

2 4
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3

x

y

IntervalInterval

]),[],,([),( 3142AyxA =

Interval Representation Interval Representation -- VectorsVectors
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Let x = [a, b] and y = [c, d] be two interval numbers

1.  Addition
x + y = [a, b] + [c, d] = [a + c, b + d]

2.  Subtraction
x − y = [a, b] − [c, d] = [a − d, b − c]

3.  Multiplication
xy = [min(ac,ad,bc,bd), max(ac,ad,bc,bd)]

4.  Division
1 / x = [1/b, 1/a]

Interval OperationsInterval Operations
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Let x, y and z be interval numbers
1.  Commutative Law

x + y = y + x
xy = yx

2.  Associative Law
x + (y + z) = (x + y) + z

x(yz) = (xy)z
3. Distributive Law does not always hold, but

x(y + z) ⊆ xy + xz

Properties of Interval ArithmeticProperties of Interval Arithmetic
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Properties of Interval ArithmeticProperties of Interval Arithmetic
Interval arithmetic is an elegant tool for 
practical work with inequalities, 
approximate numbers, error bounds, and 
more generally with certain convex and 
bounded sets.

• BUT it should be applied with care!
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Sharp ResultsSharp Results –– OverestimationOverestimation

If  a, b and c are interval numbers, then:
a (b ± c) ⊆ ab ± ac

If we set
a = [−2, 2]; b = [1, 2]; c = [−2, 1], we get

a (b + c) = [−2, 2]([1, 2] + [−2, 1]) = [−2, 2] [−1, 3] = [−6, 6]

However,
ab + ac = [−2, 2][1, 2] + [−2, 2][−2, 1] = [−4, 4] + [−4, 4] =

[−8, 8]



Presentation – Tufts University  November 29, 2007

The DEPENDENCY problem arises when one or 
several variables occur more than once in an 
interval expression 

f (x) = x (1− 1) ⇒ f (x) = 0

}~|~~)~({)( xxxxxfxf ∈−==

Sharp ResultsSharp Results –– OverestimationOverestimation

f (x) = x − x , x = [1, 2] 
f (x) = [1 − 2, 2 − 1] = [−1, 1] ≠ 0

}~,~|~~)~,~({),( yyxxyxyxfyxf ∈∈−==
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Sharp ResultsSharp Results –– OverestimationOverestimation

Let a, b, c and d be independent variables, each with 
interval [1, 3]
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Interval methods

One of the best and worst events in the history 
of interval methods was the release of interval 
libraries and the compiler extension (FORTRAN, 
C, Java) allowing an interval variable type.
Naive use of interval methods results in 
catastrophic over estimation of the width of 
interval bounds.
“I tried intervals and they are useless”
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Follows conventional FEM
Loads, nodal geometry and element 
materials are expressed as interval 
quantities
Integration of stiffness and load 
requires interval integration

Interval Finite ElementsInterval Finite Elements
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Interval Linear System of Equations

A x = b
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Interval Finite ElementsInterval Finite Elements

P1 = (0.3, − 0.6)       
P2 = (0.6, -0.6)
P3 = (0.6, − 0.3)  
P4 = (0.4, − 0.4)
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Computational Complexity

The general problem of an exact hull of the 
solution of an interval system of equations is NP 
hard (Sahni 1974 or Kreinovich et. al. 1997)
All combinations of upper and lower bounds with 
a parametric system may not yield worst-case 
bounds.
Goal – provide sharp outer bounds to hull in 
polynomial time.
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Finite Element Finite Element –– Sharp ResultsSharp Results
1. Load Dependency
2. Stiffness Dependency
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1. Load Dependency

The  global load vector Pb can be written as

Pb = M F
where  F  is the vector of interval coefficients 
of the load approximating polynomial

∑ ∫=
l

TT
b dxxbNLP  )(

Finite Element Finite Element –– Sharp ResultsSharp Results



Presentation – Tufts University  November 29, 2007

The sharp solution for the interval displacement can be 
written as:

U = (K -1 M) F

If this order is not maintained, the resulting interval 
solution will not be sharp

Thus all non-interval values are multiplied first, the last 
multiplication involves the interval quantities

Finite Element Finite Element –– Sharp ResultsSharp Results
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2. Stiffness Dependency

Element level
Coupling (assemblage process)

Finite Element Finite Element –– Sharp ResultsSharp Results
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Element Level
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Coupling  
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Finite Element Finite Element –– Present Present 
FormulationFormulation

In steady-state analysis-variational formulation

PUKUU TT −=Π
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Invoking the stationarity of  Π*, that is  δΠ* = 0
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Element-by-Element 
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Element-by-Element 
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Element-by-Element 
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Element-by-Element 
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Linear interval equation
Finding the solution of a linear system  Ax 

= b
Transform into fixed point equation g(x) = x
g (x) = x – R (Ax – b) = Rb+ (I – RA) x  
(R is nonsingular)

From Brouwer’s fixed point theorem, for 
some interval vector x ∈IRn

Rb + (I – RA) x ∈ x    ∀ x ∈ x
implies ∃ x ∈ x: Ax = b
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Linear interval equation
Finding the enclosure of  a linear interval
equation Ax = b

If R b – RAx0 + (I – RA) x* ⊆ int (x*) 
then Σ(A, b) ⊆ x0 + x*

Fixed point Iteration
x*n+1 = z + C(εx*n)  for n = 0, 1, 2,…

z = R b – RAx0, C = I – RA, ε: inflation parameter
Stopping criteria: x*n+1  ⊆ int( x*n ) 
Enclosure: Σ(A, b) ⊆ x0 + x*n+1
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Load uncertainty
Four-bay forty-story frame
Continuum

Stiffness uncertainty
Two-bay truss
Four-bay truss

ExamplesExamplesExamples
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Four-bay forty-story frame

Loading  A Loading  B Loading  C Loading  D

Examples – Load UncertaintyExamples Examples –– Load UncertaintyLoad Uncertainty
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Four-bay forty-story frame

Total number of floor load patterns

2160 = 1.46 x 1048

If one were able to calculate

10,000 patterns / s

there has not been sufficient time since
the creation of the universe (4-8 ) billion
years ? to solve all load patterns for this
simple structure using load combinations

Material  A36, Beams  W24 x 55,
Columns  W14 x 398

40
@

3.
66

 m
 =

 1
46

.3
 m

 (4
80

 ft
)

14.63 m (48 ft)

1 5

6 10

201 205

196 200

357 360

1 5201 204

17.64 kN/m (1.2 kip/ft)

Examples – Load UncertaintyExamples Examples –– Load UncertaintyLoad Uncertainty
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Four-bay forty-story frame

Four bay forty floor frame - Interval solutions for shear force and bending moment of first floor columns

Elements 1 2 3

Nodes 1 6 2 7 3 8

Combination solution Total number of required combinations = 1.461501637 × 1048

Interval Axial force (kN) [-2034.5, 185.7] [-2161.7, 0.0] [-2226.7, 0.0]

solution Shear force (kN) [-5.1, 0.9] [-5.8, 5.0] [-5.0, 5.0]

Moment (kN m) [-10.3, 4.5] [-15.3, 5.4] [-10.6, 9.3] [-17, 15.2] [-8.9, 8.9] [-16, 16]

Examples – Load UncertaintyExamples Examples –– Load UncertaintyLoad Uncertainty
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Structural loading

Interval results always contain Monte 
Carlo simulations.
Interval results match results from 
optimization formulations for an element 
within machine precision.
Interval methods are computationally 
equivalent to influence line methods for 
structures.
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Examples – Continuum Load 
Uncertainty
Examples Examples –– Continuum Load 
Uncertainty
Square plate with opening

• Modulus of elasticity = 200 GPa
• Poisson’s ratio = 0.25
• Load = [0, 6.9] kPa
• 1600 linear displacement 

triangular elements

D

E

A B

C

O

2 m

2 m

1 m1 m

1 m

1 m

 
Selected displacements, load = [0, 6.9].kPa 
 
Point Ux × 10-7 (mm) Uy × 10-7 (mm) 

A [-42.2, 4.96] [0.0, 0.0] 
B [-44.02, 3.82] [0.0, 0.0] 
C [-5.90, 16.77] [-9.97, 16.39] 
D [0.0, 0.0] [-2.38, 637] 
E [0.0, 0.0] [-2.51, 60.05] 
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Square plate with opening

Contour values of maximum σyy (kPa)                     Contour values of  minimum σyy (kPa) 

0.063 kPa

44.22 kPa 0.0 kPa

-10.65 kPa

Examples – Continuum Load 
Uncertainty
Examples Examples –– Continuum Load 
Uncertainty
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Truss structure

4.5m4.5m 4.5m4.5m

4.5m

1
2 5 6

8

743

1

2
3

4

5

6

7

8

9

10

11

12

14

13
15

P1P2 P3

P4

2
1 2 3 13 14 15

2

, , , , :  [9.95,  10.05] cm (1% uncertainty) 
cross-sectional area 
of all other elements:     [5.97,  6.03] cm (1% uncertainty) 
modulus of elasticity of all elements: 200,000 MPa 

A A A , A A A

1 2

3 4

[190, 210] kN, [95,105] kN 
[95,105] kN, [85.5,94.5] kN (10% uncertainty)

= =
= =

p p
p p
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Truss structure - results

0.15%0.19%0.11%0.19%δ

327%362%146.18%163.45%δ
1297.124– 717.1520.048636– 0.011216Naïve IFEA

304.037273.0490.0197780.017642Present IFEA

303.584273.5620.0197560.017676Combinatorial
N7(UB)N7(LB)u5(UB)u5(LB)Method

Table: results of selected responses

unit: u5 (m), N7 (kN). LB: lower bound; UB: upper bound.
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0.017

0.018

0.018

0.019

0.019

0.020

0.020

0.021

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Uncertainty in cross-sectional area

u
5 (

m
)

Comb. LB
Comb. UB
IFEA LB
IFEA UB

Truss structure – results

5

 for moderate uncertainty ( 5%), very sharp bounds are obtained
 for relatively large uncertainty, reasonable bounds are obtained 

  in the case of 10% uncertainty:
  Comb.: = [0.017711,0.019811],  I

• ≤
•

u 5FEM: = [0.017252,0.020168] 
  (relative difference: 2.59%, 1.80% for LB,  UB, respectively)

u
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Frame structure

14.63m6.1m

6.1m

4.57m

C1 C2 C3

C4 C5 C6

B1 B2

B3 B4

w1 w2

w3 w4

1 2 3

4 5
6

7 8
9

W18×40B3

W27×94B4

W36×135B2

W27×84B1

W14×109C6

W14×109C5

W10×12C4

W14×109C3

W14×132C2

W12×19C1

ShapeMember

2results listed: nodal forces at the left node of member B
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Frame structure – case 1

UBLBUBLBNodal force

1974.951847.211974.951847.21Moment (kN·m)
891.90833.61891.90833.61Shear (kN)
239.37219.60239.37219.60Axial (kN)

Present IFEACombinatorial
2Table: Nodal forces at the left node of member B

1 2

3 4

Case 1: load uncertainty
[105.8,113.1] kN/m,      [105.8,113.1] kN/m, 
[49.255,52.905] kN/m,  [49.255,52.905] kN/m, 

= =
= =

w w
w w

 exact solution is obtained in the case of load uncertainty•
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Frame structure – case 2

UBLBUBLBNodal force

1982.631839.011979.321842.86Moment (kN.m)
892.47832.96892.24833.34Shear (kN)
242.67219.35240.98218.23Axial (kN)

Present IFEAMonte Carlo sampling*

2Table: Nodal forces at the left node of member B

Case 2: stiffness uncertainty and load uncertainty
1% uncertainty introduced to , , and  of each element.
Number of interval variables: 34.

A I E

*Using 106 realization.
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Truss with a large number of interval variables

A B

m@L

n@L

C D

p p

p

p

p

p p

8×40

7×40
6×40

6×35

6×30

5×30

5×22

4×20

4×12

3×10
story×bay

22541127

25761288

1932966

1692846

1452726

1210605

890445

648324

392196

246123
NvNe

0

0

[0.995,1.005] ,  
[0.995,1.005]   for 1,...,

i

i e

A
E i N

=

= =

A
E
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Efficiency study

90.%9.2%528.45475.748.45725768×40
90.1%9.1%358.76323.132.53622547×40
89.7%9.7%156.27140.215.11616926×35

80.5%12.4%10.178.801.2756484×20
89.1%10.2%59.7053.176.09612105×30

19.5%
ti/t

0.72
t

0.56
tr

0.14
ti tr/tIterationNvStory×bay

78.4%42463×10

ti : iteration time, tr : CPU time for matrix inversion, t : total comp. CPU time 

Table: CPU time for the analyses with the present method (unit: seconds)

 majority of time is spent on matrix inversion•
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0

5000

10000

15000

20000

25000

30000

35000

0 500 1000 1500 2000 2500

Number of interval variables

C
PU

 ti
m

e 
(s

ec
)

Sensitivity Analysis method

Present interval FEA

Efficiency study

2576

2254

1692

1210

648

246
Nv

358.814450

528.4532402

156.34100

59.7965.86

10.1764.05

0.721.06
Presen

t
Sens.

Computational time: a comparison of  the senstitivity analysis method
 and the present method

Computational time (seconds)
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OutlineOutline
COMPUTING ON SETS: Random Sets, Fuzzy Sets, Convex Sets, Clouds
Interval Operations
Examples of progress in Reliable Engineering Analysis
Validation Errors:
Errors in representing the physics
Errors in parameters used in model
Interval Finite Elements
Verification ErrorsVerification Errors
Errors in discretization of modelErrors in discretization of model
Errors in computations (truncation errors)
Interval Boundary ElementsInterval Boundary Elements
Conclusions
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The Laplace equation is:

is the domain of the system

is the boundary of the system

,       are the values at the boundary

Boundary Element Analysis
of Laplace Equation

02 =∇ u

uu ˆ=

qq
n
u ˆ==

∂
∂

Ωin

1Γon

2Γon
)(Ω

)(Γ

)ˆ(u )ˆ(q
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Orthogonalization of Laplace equation with respect to a 
test function      is performed to minimize the error due to 
approximation of the  exact solution of      and      :

Boundary Element Analysis
of Laplace Equation (Cont.)

Γ
∂
∂

−−Γ−=Ω∇ ∫∫∫
ΓΓΩ

d
n
wuudwqqdwu

12

)ˆ()ˆ()( 2

)(u )(q
)(w
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Twice integrating by parts on the left side and 
considering               and                       yields:

is a source point

Boundary Element Analysis
of Laplace Equation (Cont.)

wu =* nuq ∂∂= /**

,ˆˆ)(
1212

**** Γ+Γ=Γ+Γ+ ∫∫∫∫
ΓΓΓΓ

dquduqdquduqu ξ

)(ξ
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The boundary integral equation is integrated such that 
the source point        is included on the circular boundary 
of    radius      , as           :

Boundary Element Analysis
of Laplace Equation (Cont.)

)(ξ
)(ε 0→ε

,)(),()(),()(
2
1 ** ∫∫

ΓΓ

Γ=Γ+
xx

xx dxqxudxuxqu ξξξ Γ∈ξ
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Any boundary     can be discretized into boundary 
elements       consisting of nodes, at which a value of 
either       or       is known, and also consisting of 
assumed polynomial shape functions between nodes.

Constant Boundary Element 
Discretization

)(Γ
)( iΓ

)(u )(q
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In this work one-noded boundary elements with constant 
shape functions are used, leading to the following 
discretization:

and        are vectors of nodal values

is a vector of constant shape functions

Constant Boundary Element 
Discretization (Cont.)

])][([)( iuxxu Φ=

])][([)( iqxxq Φ=

][ iu ][ iq

)]([ xΦ
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The discretized integral equation is written as:

or in matrix form:

Applying the boundary conditions, the system of linear 
equations is rearranged as:

Constant Boundary Element 
Discretization (Cont.)

∑ ∫∑ ∫
ΓΓ

ΓΦ=ΓΦ+
Elements

ixi
Elements

xi

xx

qdxxuudxxqu ][)]()[,(][)]()[,(}{
2
1 ** ξξ

]][[]][[ qGuH =

][]][[ bxA =
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In the analysis of the discretiztion error, the interval 
bounded unknown functions must satisfy the continuous 
problem.

Discretization Error

∫∫
ΓΓ

Γ=Γ+ ,)(),()(),()(
2
1 ** dxqxudxuxqu ξξξ Γ∈ξ
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Discretization Error Bounds
The boundary (G) is subdivided into elements and for each element, the 
interval values     and    are found that bound the functions (u) and (q) 
over an element (i) such that:

)~(u)~(q

{ }

∑∫∑∫
= Γ= Γ

Γ=Γ+∀

≤≤≤≤≠∀≤≤≤≤∈∀

n

i
iij

n

i
iijjj

jjjjjjiiiiii

ii

dxqxudxuxqu

qqquuuFindjiknownisqqquuuAssumenj

1

*

1

* )(),()(),()(
2
1

,.,,...,2,1

ξξξξ
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Each term of the summation is represented graphically

Discretization Error (Cont.)
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Discretization Error (Cont.)

The kernel splitting techniques have been used to bound 
the integral equations in which the left hand side is 
deterministic (Dobner). The boundary integral equations 
have an interval left hand side and therefore a new 
approach is developed.

∫
Γ

Γ= dxuxkb )()~,()( ξξ
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The integral of the product of two functions is bounded 
as:

The right hand side is expressed as a sum of the 
integrals:

or

Discretization Error (Cont.)

∫∫
ΓΓ

Γ⊂Γ= duxadxuxab ~)~,()()~,(~ ξξ

∫∫∫
ΓΓΓ

Γ+Γ=Γ
21

21
~)~,(~)~,(~)~,( duxaduxaduxa ξξξ

0)~,( >ξxa 0)~,( <ξxa 1Γon

2Γon0)~,( ∈ξxa
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The interval kernel is of the same sign on       , thus       
can be taken out of the integral on       :

cannot be taken out of the integral on        due to 
subdistributivity property.

Discretization Error (Cont.)

∫∫∫
ΓΓΓ

Γ+Γ=Γ
21

21
~)~,(~)~,(~)~,( duxaudxaduxa ξξξ

)( 1Γ
)~(u)( 1Γ

)~(u )( 2Γ
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The interval kernel is bounded by its limits:

where

Discretization Error (Cont.)

∫∫
ΓΓ

Γ⊂Γ
22

22
~~~)~,( duaduxa ξ

)}]~,~(max{)},~,~([min{~ ξεξε ++= xaxaa

],[~ εεε −=
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can be taken out of the integral and the integral 
equation becomes:

The kernels are bounded for all the elements resulting in 
the system of equations:

Discretization Error (Cont.)

udauaxuaxnuaxnuaxdua
n

ixxx

n

ix
~~~)~(lim~)~(lim)~~(lim)~~(lim~~

22

22

22

2
1000102 ∫∑∑∫

ΓΓ=
→ΔΓ→ΔΓ→Δ

Γ=
→Δ

Γ

Γ=Δ=Δ=Δ=Δ=Γ

)~(u

udaudxab ~~~)~,(~

21

21 ∫∫
ΓΓ

Γ+Γ⊂ ξ

]~[]~[]~][~[]~][~[ 21 bcuAuA ⊃=+
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Considering an interval linear system of equations:

The system is preconditioned by

Let

Interval Equation Solver

]~[]~][~[]~][~[ 21 buAuA =+

]~[][]~][~[][]~][~[][ 1
12

1
11

1
1 bAuAAuAA −−− =+

1
1][ −A

]~[]~[][ 11
1

1 IAA =− ]~[]~[][ 32
1

1 AAA =− ]~[]~[][ 1
1

1 bbA =−

]~[]~][~[]~][~[ 131 buAuI =+
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Parameterized Interval
Equation Solver

The interval bounds obtained by the solver are not sharp 
since the dependency of the location of the source point 
has not been considered.

The uniqueness of the problem is not preserved since two 
source points are allowed to have the same location at one 
time resulting in rectangular matrices.

The parameterization considers each source point to have 
a unique location and allows for sharper interval bounds.
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The system of equations is rearranged:

Preconditioning and substitution as described above 
lead to:
The parameterization is incorporated into the solver:

is computed when

Parameterized Interval
Equation Solver (Cont.)

]~[]~][[]~][[ 21 buAuA =+

]~[]~][~[ 1buA =

)]~(~[][]~[ 1
1

1
0 i

n

i

bAu ξU
=

−=

5.0=ξ1][ −A
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The difference between the solution and the initial 
guess is computed and pre-multiplied by the 
preconditioning matrix        :

Parameterized Interval
Equation Solver (Cont.)

]~[]~[ 1 δδ =

1][ −A

)]~(~[][][]~[ 1

1
i

n

i
d AAII ξ−

=

−= U

( )]~)][~(~[]~)][~(~[)]~(~[]~[ 0201
1

uAuAb iii

n

i

ξξξδ −−=
=
U
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The iteration follows as:

If

Parameterized Interval
Equation Solver (Cont.)

]~[]~[ 1δ=eld

]~][~[]~[]~[ 1 eldId+= δδ

]~[]~[ 1 δδ ⊃

]~[]~[]~[ 10 δ+= uu
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Example 1

The first example obtains the bounds on discretization error for the 
BEA of the Laplace equation for the unit square boundary.

Boundary Conditions: ubottom=0,
qsides=0, utop=1

widthTrue

widthComputed
indexytEffectivi =
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Example 1 (Cont.)

The figure shows the interval bounds (solid line) on the true solution 
(dashed line) for the potential on the right lower corner nodes,
nodes 2, 3, 4, 5, and 6 respectively, for the five meshes.
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Example 1 (Cont.)

The effect of the mesh refinement on the solution width (left) and the 
effectivity index (right) is shown for these nodes.
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Example 1 (Cont.)

The interval bounds for the interior potential on the x=0.5 plane is 
shown (solid line) and compared with the true solution (dashed line) 
for three uniform meshes composed of 4, 8, and 12 elements.
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Example 1 (Cont.)

The effectivity index for the previous solution is shown for the three 
uniform meshes. 
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Example 1 (Cont.)

The interval bounds for the interior x-direction flux on the x=0.5 
plane is shown (solid line) and compared with the true solution 
(dashed line) for three uniform meshes composed of 4, 8, and 12 
elements.
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Example 1 (Cont.)

The interval bounds for the interior y-direction flux on the x=0.5 
plane is shown (solid line) and compared with the true solution 
(dashed line) for three uniform meshes composed of 4, 8, and 12 
elements.
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Example 2

The second example shows the behavior of effectivity index in the 
presence of significant discretization error in the BEA of the Laplace 
equation for the rectangular boundary with ratio 1:2.

Boundary Conditions: ubottom=0, qsides=0, utop=1
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Example 2 (Cont.)

The figure shows the behavior of effectivity index of the potential 
solution for the right lower corner nodes, 2, 3, 4, 5, and 6 for the five 
respective meshes.
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Example 3

The third example is a boundary element analysis of the Torsion 
problem stated in terms of the Laplacian of the warping function. 
Four uniform constant element meshes are analyzed. Neumann 
boundary conditions are applied at all boundaries and an exact 
Dirichlet boundary condition is applied on the middle element at the 
bottom edge for each respective mesh.
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Example 3 (Cont.)

The warping function solution width (left) and the effectivity index 
(right) is shown for the bottom right corner nodes, 4, 6, 8, and 10, for 
the four respective meshes.
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Example 3 (Cont.)

The interval bounds (solid line) are shown enclosing the true 
solution (dashed line) for these nodes.
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Example 3 (Cont.)

The true solution (dashed line) of the warping function is enclosed 
by the interval bounds (solid line) for the right edge for four uniform 
meshes.
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Example 3 (Cont.)

The behavior of the interval solution bounds (solid line) for the 
warping function with parameterization is shown and compared with 
the true solution (dashed line) for node 4 in the 12 element mesh.
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Example 3 (Cont.)

The computational cost with increased parameterization is shown 
for the 36 element mesh.
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Example 3 (Cont.)

The computational cost with mesh refinement is shown (left). The
computational time varies approximately cubically (right).
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Example 4

The example obtains the solution for the Laplace equation whose 
true solution is:

for the L-shaped domain. Four uniform constant element meshes 
are studied. The potential boundary conditions are applied at all 
edges.
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Example 4 (Cont.)

The interval solution width for the boundary flux (left) and the
effectivity index (right) for the left lower corner elements, 6, 12, 18, 
and 24, for the four respective meshes are shown.
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Example 4 (Cont.)

The true solution (dashed line) is bounded by the interval solution 
(solid line) for these nodes.
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Example 4 (Cont.)

The interval bounds (solid line) enclose the true solution (dashed 
line) for the left edge for the four meshes.
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Example 5

This example obtains the bounds on discretization error for the BEA 
of the Elasticity problem for the unit square boundary.

Boundary Conditions: ubottom=0, tsides=0, uy top=1, tx top=0
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Example 5 (Cont.)

The interval solution width for the y-direction displacement (left) and 
the effectivity index (right) for the right lower corner elements, 2, 3, 
4, and 5, for the four respective meshes are shown.
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Example 5 (Cont.)

The interval bounds (solid line) are shown enclosing the true 
solution (dashed line) for these nodes.
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Example 5 (Cont.)

The interval bounds (solid line) enclose the true solution (dashed 
line) of the y-direction displacement for the right edge for the four 
meshes.
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Example 6

The second example shows the behavior of the solution for a 
hexagonal plate in tension. A symmetry model is considered to 
decrease computational time. Four uniform meshes are analyzed.
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Example 6 (Cont.)

The interval solution width for the y-direction displacement (left) and 
the effectivity index (right) for the left lower corner elements, 4, 8, 
12, and 16, for the four respective meshes are shown.
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Example 6 (Cont.)

The interval bounds (solid line) are shown enclosing the true 
solution (dashed line) for these nodes.
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Example 6 (Cont.)

The interval bounds (solid line) enclose the true solution (dashed 
line) of the y-direction displacement for the left edge for the four 
meshes.
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Example 7

The following example solves a Laplace equation whose exact 
solution is:

using four uniform constant element mesh.
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Example 7 (Cont.)

The potential boundary conditions are applied on the top edge and 
on the right part of the bottom edge from the singularity. The flux 
boundary conditions were applied on the left and right edges and on 
the left part of the bottom edge from the singularity. Twenty 
subintervals were used to obtain nearly sharp interval bounds.
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Example 7 (Cont.)

The interval solution width for the potential (left) and the effectivity
index (right) for the right lower corner elements, 3, 5, 7, and 9, for 
the four respective meshes are shown.
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Example 7 (Cont.)

The interval bounds (solid line) are shown enclosing the true 
solution (dashed line) for these nodes.
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Example 7 (Cont.)

The behavior of the interval solution bounds (solid line) for the 
potential with parameterization is shown and compared with the true 
solution (dashed line) for node 3 in the 5 element mesh.
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Example 7 (Cont.)

The interval bounds (solid line) enclose the true solution (dashed 
line) for the right edge for the four meshes.
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Example 7 (Cont.)

The bounds on the flux intensity factor (solid line) enclosing the true 
solution (dashed line) are shown for elements 2, 3, 4, and 5 for the 
sour respective meshes.
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OutlineOutline
COMPUTING ON SETS: Random Sets, Fuzzy Sets, Measures on Borel
Sets, Convex Sets, Clouds
Interval Operations
Examples of progress in Reliable Engineering Analysis
Validation Errors:
Errors in representing the physics
Errors in parameters used in model
Interval Finite Elements
Verification Errors
Errors in discretization of model
Errors in computations (truncation errors)
Interval Boundary Elements
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ConclusionsConclusionsConclusions

Interval finite element methods (IFEM) can 
provide sharp bounds on system response for 
static and dynamic problems.
Interval boundary elements can provide effective 
worse case bounds on discretization errors as 
well as truncation errors and boundary 
uncertainty.
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Conclusions

Interval methods can provide a foundation 
for computationally efficient methods for 
treating uncertainties in engineering 
calculation.

Quantification of the uncertainty in a 
calculation is essential to measure the 
information provided by the analysis.
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Thank you
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CWRU open house

Rene Magritte, Clairvoyance, 1936
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Structural Dynamics, Stability …

Response Spectrum Analysis
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Results:

Examples (Cont.)
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Results:

Examples (Cont.)
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Results:

Examples (Cont.)
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Results:

Examples (Cont.)
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Results   This is way too small to read.    You should 
show a key point(s) and the associated values

:

Examples (Cont.)
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