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SUMMARY

This thesis presents a nontraditional treatment for uncertainties in the mater-

ial, geometry, and load parameters in linear static finite element analysis (FEA) for

mechanics problems. Uncertainties are introduced as bounded possible values (inter-

vals). FEA with interval parameters (interval FEA, IFEA) estimates the range of the

system response based on the bounds of the system parameters. The obtained results

should be accurate and efficiently computed. Toward this end, a rigorous interval

FEA is developed and implemented.

In this study, interval arithmetic is used in the formulation to guarantee an enclo-

sure for the response range. The major difficulty associated with interval computation

is the dependence problem, which results in severe overestimation of the system re-

sponse ranges. Particular attention in the development of the present method is

given to control the dependence problem for sharp results. The developed method is

based on an Element-By-Element (EBE) technique. By using the EBE technique, the

interval parameters can be handled more efficiently to control the dependence prob-

lem. The penalty method and the Lagrange multiplier method are used to impose

the necessary constraints for compatibility and equilibrium. The resulting structural

equations comprise a system of parametric linear interval equations. The standard

fixed point iteration is modified, enhanced, and used to solve the interval equations

accurately and efficiently. The newly developed dependence control algorithm ensures

the convergence of the fixed point iteration even for problems with relatively large

uncertainties. Further, special algorithms have been developed to calculate sharp re-

sults for stress and element nodal force. The present method is generally applicable

xiii



to linear static interval FEA, regardless of element type.

Numerical examples are presented to demonstrate the capabilities of the devel-

oped method. It is illustrated that the present method yields accurate results which

are guaranteed to enclose the true response ranges in all the problems considered,

including those with a large number of interval variables (e.g., more than 250). The

scalability of the present method is also illustrated. In addition to its accuracy, rig-

orousness and scalability, the efficiency of the present method is also significantly

superior to previous methods such as the combinatorial, the sensitivity analysis, and

the Monte Carlo sampling method.

xiv



CHAPTER 1

INTRODUCTION

In recent years, there has been an increased interest in the modeling and analysis of

engineered systems under uncertainties. The interest stems from the fact that nu-

merous sources of uncertainties exist in reality and arise in the modeling and analysis

process. Some of these uncertainties stem from factors that are inherently random (or

aleatory). Others arise from a lack of knowledge (or epistemic). Computational solid

and structural mechanics, for example, entails uncertainties in the geometry, material

and load parameters as well as in the model itself and in the analysis procedure. As

an inevitable consequence of these uncertainties, the responses of the mechanical sys-

tem, such as displacement, stress and vibration frequencies, will always exhibit some

degree of uncertainty. Even though significant effort may be needed to incorporate

uncertainties into the modeling and analysis process, this results in providing useful

information that can aid in decision making.

Probabilistic modeling and statistical analysis is well-established for uncertainty

modeling and uncertainty propagation. This approach can describe uncertainty aris-

ing from stochastic disturbance. In addition, a number of non-probabilistic ap-

proaches have been proposed recently, including fuzzy set theory and possibility the-

ory (Zadeh, 1965; ?), interval approach (Moore, 1966), Dempster-Shafer theory of evi-

dence (Dempster, 1967; Shafer, 1976), random set theory (Kendall, 1974), probability

bounds approach (Berleant, 1993; Ferson and Ginzburg, 1996; Ferson et al., 2003), im-

precise probabilities (Walley, 1991), convex model (Ben-Haim and Elishakoff, 1990),

and others. The growing interest in non-probabilistic approaches originated from

criticism of the credibility of probabilistic approach when data is insufficient. It is

1



argued that the non-probabilistic approaches could be more appropriate in modeling

certain types of nondeterministic information, resulting in a better representation of

the simulated physical behavior.

In this thesis, interval approach is used to describe the parameter uncertainties

of structures. The uncertainty is assumed to be unknown but bounded, and it has

lower and upper bounds without assigning a probability structure.

The finite element analysis (FEA) is currently the dominant tool for analysis of

structural behavior. This thesis studies the FEA of structures with interval para-

meters. Such an analysis is referred to as Interval FEA (IFEA). The objective of

interval FEA is to obtain a rigorous sharp enclosure (outer bounds) for the ranges of

structural responses. The interval FEA provides a treatment for problems where

1. no information can be defined beyond lower and upper bounds for system pa-

rameters;

2. rapid analysis of the response ranges are desired.

It is the aim of this thesis to develop an efficient computational framework for FEA of

structures with interval parameters. The attention is restricted to the static analysis

of linear elastic structures only.

As an introduction, this chapter describes the necessary background information

to put into context the research conducted in this thesis. First, a classification of

uncertainties is presented. Then, the probabilistic approach, fuzzy set theory and

interval approach are discussed. This is followed by an introduction of FEA of struc-

tures with interval parameters. Finally, the chapter is concluded with the objectives

and organization of the thesis.
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1.1 Aleatory and Epistemic Uncertainty

There are various ways in which the types of uncertainty might be classified. It is

common in engineering practice to distinguish between “aleatory” uncertainty and

“epistemic” uncertainty (e.g., Melchers, 1999; Ferson and Ginzburg, 1996; Paté-

Cornell, 1996; Helton and Burmaster, 1996; Hora, 1996).

Aleatory uncertainty refers to underlying, intrinsic variabilities of physical quanti-

ties. It is not due to a lack of knowledge and cannot be reduced. Aleatory uncertainty

is also termed as type A uncertainty, stochastic uncertainty, variability, irreducible

uncertainty, or objective uncertainty. Ideally, objective information on both the range

and the likelihood of the quantity within this range is available. Aleatory uncertainty

is generally quantified by a probability or frequency distribution when sufficient in-

formation is available to estimate the distribution.

Epistemic uncertainty refers to uncertainty which results from the lack of knowl-

edge or incomplete information. In contrast with aleatory uncertainty, epistemic un-

certainty might be reduced with additional data or information, or better modeling

and better parameter estimation. It is also termed as type B uncertainty, ignorance,

incertitude, reducible uncertainty or subjective uncertainty. The fundamental cause

of epistemic uncertainty is incomplete knowledge. Sources of incomplete informa-

tion, including vagueness, nonspecificity, and dissonance, are summarized in Table

1.1 (Klier and Folger, 1998). Examples of epistemic uncertainty are:

• statistical uncertainty due to lack of sufficient data,

• a range of possible values of a physical quantity provided by expert opinion,

• model uncertainty due to limited understanding of complex physical processes.
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Table 1.1: Incomplete information definitions (Klier and Folger, 1998).

Type Definition

Vagueness The information that is imprecisely defined, unclear, or
indistinct (characteristic of communication by language).

Nonspecificity The variety of alternatives in a given situation that are
all possible, i.e., not specified.

Dissonance The existence of totally or partially conflicting evidence.

1.2 Approaches for Representation of Uncertainty

The distinction between epistemic uncertainty and aleatory uncertainty is impor-

tant when determining how each should be described mathematically and propa-

gated through the analysis. While probabilistic approach is widely accepted to rep-

resent aleatory uncertainty, the use of probabilistic approach for representation of

epistemic uncertainty often raises debate (Elishakoff, 1995; Ben-Haim, 1994; Ferson

and Ginzburg, 1996; Ferson, 1996; Ferson et al., 2004). Many researchers argue that

because epistemic uncertainty has a different nature, it should be represented us-

ing non-probabilistic approaches such as the fuzzy set theory (Zadeh, 1965), interval

approach (Moore, 1966), convex model (Ben-Haim and Elishakoff, 1990), Dempster-

Shafer evidence theory (Dempster, 1967; Shafer, 1976), imprecise probabilities (Wal-

ley, 1991), and so on. Among these non-probabilistic approaches, the fuzzy set theory

and the interval approach have been applied in the area of computational mechanics

for analysis of structures under uncertainties. In the following sections, the proba-

bilistic approach and its limitations are discussed. Also, the Fuzzy set theory and the

interval approach are introduced.

1.2.1 Probabilistic approach

In the probabilistic approach, uncertainties are described by random variables, uncer-

tain time dependent functions are represented by stochastic processes, and uncertain
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spatial properties are modeled by random fields. The main objective of the proba-

bility analysis is the determination of the reliability of the system. Herein, reliability

is defined as the probability that the system will adequately perform its intended

mission over a given period of time. The commonly used techniques for uncertainty

propagation include Monte Carlo and Latin Hypercube sampling methods, first-order

and second-order reliability methods (FORM and SORM, respectively) and the re-

sponse surface method. The probabilistic approach is well developed and is described

in many texts (e.g., Ang and Tang, 1975; Melchers, 1999; Hayter, 2002).

It is widely accepted that the probabilistic approach is most appropriate to de-

scribe aleatory uncertainty when sufficient experimental data are available. More

often, the necessary data are simply lacking or limited. In this case, the analyst

provides subjective information about the input probability distribution. This is

sometimes referred to as a subjective probability or Bayesian probability. For exam-

ple, it is common to assume a uniform distribution if only a range of possible values

for an uncertainty is available, but no likelihood information of the quantity within

this range is available. This practice identifies ignorance of likelihood with equality

of probabilities. In this context, the Bayesian approach can be used to amend and

improve the estimates when more data become available. Before receiving additional

information, however, the Bayesian approach remains a subjective representation of

uncertainty.

It often raises the debate as to whether probabilistic approach can deliver the

reliability when there is a lack of sufficient experimental data to validate the assump-

tions made regarding the joint probability functions of random variables involved. El-

ishakoff (1995) studied the effect of human error in constructing a probabilistic model.

It has been shown that a small error in probabilistic data may lead to a large errors

in estimating reliability (Elishakoff, 1995; Ben-Haim, 1994). As Elishakoff (1995)

notes, “In modern probabilistic codes and in most, if not all, studies the necessary
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probabilistic information on uncertain quantities is assumed rather than appropri-

ately substantiated through statistical analysis of extensive experimental data. After

numerous assumptions are made, some new numerical approaches, often sophisti-

cated ones, are tested on simple examples. On the other hand the accuracy of the

experimental data (if at all present) is not discussed.”

It is also argued that probability theory cannot handle situations when the infor-

mation is nonspecific, ambiguous, or conflicting (Walley, 1991; Ferson and Ginzburg,

1996; Sentz and Ferson, 2002; Oberkampf and Helton, 2005). Freudenthal (1972),

who was one of the pioneers of probabilistic approaches in engineering, states that

“. . . ignorance of variation does not make such variation random”. This statement

means uncertainty does not always equal randomness, and should not always be

treated as though it were variability.

1.2.2 Fuzzy set theory

The concept of fuzzy set and fuzzy logic were introduced by Zadeh (1965) to mathe-

matically represent uncertainties due to vagueness rather than randomness.

A fuzzy set is a generalization to classical set to allow elements to take partial

membership in vague concepts. Consider a universe of discourse X (i.e., a universal

set X that covers a definite range of objects) with elements x. The crisp set A of X

is defined by the characteristic function µA(x) of A, where

µA(x) =





1 for x ∈ A,

0 for x /∈ A.
(1.1)

That is, the characteristic function associated with A is a mapping that can be ex-

pressed by

µA(x) : X → 0, 1. (1.2)

A fuzzy set B over the universe of discourse X is defined by an analogous mem-

bership function µB(x), µB(x) : X → [0, 1]. The membership function maps the
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members of the universe into the interval [0, 1] as

µB(x) =





1 if x ∈ B,

0 if x /∈ B,

p, 0 < p < 1 if x partly in B.

(1.3)

µB(x) = 1 if x is completely in B, µB(x) = 0 if x is completely outside B, and

0 < µB(x) < 1 if x is partly in B. The function µB(x) represents the degree of

membership, or membership value, of an element x in the fuzzy set B. For example,

given the measured value of a parameter, the membership function gives the “degree of

membership” that the parameter is “small” or “large.” The value of the membership

function is referred to as “possibility.” The possibility in fuzzy sets should not be

equated with the statistical concept of probability. Fuzzy membership represents

similarities of objects to imprecisely defined properties, while probability describes

information about relative frequencies.

Many types of functions can be used for membership functions in fuzzy sets,

but triangular or trapezoidal shaped membership functions are the most common

because they are easier to represent. The triangular membership function, illustrated

in Fig. 1.1, is

µ(x) =





x− a

b− a
, if a ≤ x ≤ b,

c− x

c− b
, if b < x ≤ c,

0, otherwise,

(1.4)

and the trapezoidal membership function (Fig. 1.2) is

µ(x) =





x− a

b− a
, if a ≤ x < b,

1, if b ≤ x ≤ c,

x− d

c− d
, if c < x ≤ d,

0, if x < a or x > d.

(1.5)
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Figure 1.1: Fuzzy set: triangular membership function.

Figure 1.2: Fuzzy set: trapezoidal membership function.

In fuzzy analysis, all uncertainties are described by fuzzy sets. Various methods

for fuzzification of uncertain parameters have been reported in the literature, includ-

ing intuition, inference, rank ordering, neural networks, genetic algorithm, inductive

reasoning, soft partitioning, meta rules and fuzzy statistics. A comprehensive review

of these methods can be found in Ross (1995). Once the uncertainties are expressed
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as fuzzy sets, fuzzy arithmetic is used to compute the fuzzy response quantity. Infor-

mation about fuzzy arithmetic can be found in series of books and publications such

as Kaufman and Gupta (1991) and Bojadziev and Bojadziev (1995).

Fuzzy sets and fuzzy logic have found extensive applications in control problems

and artificial intelligence (AI) (Yen et al., 1995; Yen, 1999), but its use for uncertainty

modeling within the context of computational mechanics is a relatively new area of

research. Rao and Chen (1998), Muhanna and Mullen (1999), Möller et al. (2000),

Akpan et al. (2001a), and Akpan et al. (2001b) studied linear static problems with

fuzzy material properties and fuzzy loads. Gersem et al. (2004) analyzed the dynamic

behavior of structures with fuzzy parameters. Möller et al. (1999) studied structural

safety assessment by using fuzzy set theory. Non-stochastic uncertainty and subjective

estimates of objective values by experts were taken into account.

1.2.3 Interval approach

In many cases, only a range of possible values for a non-deterministic quantity is

available, but no further information about which values are more likely to occur

is available. In this situation, a uniform distribution is often used in probability

theory. As such, the lack of knowledge is filled by subjective information assumed

by the analyst, expressed in the form of uniform distribution. Ferson and Ginzburg

(1996) demonstrated how the probabilistic approach can yield incorrect results in this

case. Many argue that in this situation, the uncertainty is best represented by the

information as provided to us; that is, by the interval itself (Ferson and Ginzburg,

1996; Joslyn and Ferson, 2004).

In the interval approach, an uncertain quantity is assumed to be unknown but

bounded, and it has lower and upper bounds (endpoints) without assigning a proba-

bility structure. Therefore, the interval representation of an uncertain quantity x is
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given by

x = [x, x] (1.6)

where x and x are the lower and upper bounds of the uncertain quantity respectively.

The interval approach concept can be directly attributed to Moore (1966). Moore’s

purpose for introducing intervals was to provide a treatment of rounding errors and

truncation errors in finite precision arithmetic. For example, in a computer with

five significant digits, the number
√

2 can be represented using an interval
√

2 ∈
[1.4142, 1.4143]. Thus the rounding error is enclosed in the interval. Besides bounding

the effects of rounding errors, interval arithmetic can probe the behavior of functions

efficiently and reliably over whole sets of arguments at once. By its nature, interval

arithmetic yields rigorous enclosures for the range of operations and functions. The

results are intervals in which the exact results must lie. This characteristic has made

interval arithmetic useful in scientific computing, including

• Bounding the effects of rounding errors and truncation errors (Moore, 1966,

1979);

• Bounding the range of functions (Moore, 1966, 1979; Hansen and Walster, 2003;

Neumaier, 1990);

• Bounding the error term in Taylor’s theorem (Neumaier, 1990);

• Bounding the results of Monte Carlo simulations in reliability analysis (Tonon,

2004);

• Computing rigorous bounds on the solution of ordinary and partial differential

equations (Moore, 1979; Plum, 2001; Jackson and Nedialkov, 2002).

• Global optimization (Hansen and Walster, 2003);

• Solving nonlinear systems (Neumaier, 1990; Hansen and Walster, 2003)
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– construct rigorous bounds around an approximate solution, in which an

actual solution must lie,

– exhaustively search a region to find all roots of a nonlinear system.

Interval arithmetic has been successfully applied to many applications. These include

reliable modeling and optimization for chemical engineering (Bogle et al., 2004), esti-

mating the performance of financial trading systems (Matthews et al., 1990), calcu-

lating validated reliability bounds (Tonon, 2004), computer-assisted proofs in mathe-

matical physics (Lanford, 1984), solving interval constraints in computer-aided design

(Wang, 2004), existence verification and construction of robust controller (Nataraj

and Tharewal, 2004), and others. More information about applications for interval

arithmetic is found in Corliss (1990), Corliss and Kearfott (1999), Kearfott (1996),

Muhanna and Mullen (2004).

Starting in the mid-nineties, the interval approach has been used to describe pa-

rameter uncertainty in engineering systems. The interval approach provides a simple,

elegant, and computationally efficient way to represent the uncertainties with only

range information. For example, the thickness of a plate is subject to manufacturing

tolerance, and is given as h± δ or in an interval form as [h− δ, h + δ] = [h, h]. In the

case of the distributed live load, if it is known to range from 2.2 kN/m2 to 2.6 kN/m2,

it can be represented as an interval [2.2, 2.6] kN/m2. The load may be a constant the

value of which is not precisely known, or it may vary according to some unknown dis-

tribution with known bounds in [2.2, 2.6] kN/m2. Experimental data, measurements,

statistical analysis and expert knowledge represent information for defining bounds

on the possible ranges of such quantities (Ferson et al., 2003; Ferson and Hajagos,

2004; Ferson et al., 2004). Care should be taken not to interpret the interval quantity

as the absolute assurance in the physical quantity. It merely represents the values

the analyst considers possible at the time the analysis is performed.

Interval analysis provides rigorous bounds on system responses based on the
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bounds of the input parameters. Interval arithmetic has been developed for com-

putations involving interval quantities. A review of interval arithmetic is found in

Chapter 2.

If sufficient probabilistic information is available, the use of the interval approach

to describe uncertainties only gives the bounds of the responses, and the additional

likelihood information about the responses is lost. In this situation, probabilistic

approach is generally preferred. However, since interval analysis usually requires

much less computation than a probability analysis such as Monte Carlo simulation,

it might still be valuable to use the interval approach to perform a rapid analysis

of the response ranges. Another practical application of the interval approach is in

the study of the sensitivity of the system behavior with respect to changes in input

parameters. The system behavior over the entire interval range of parameter variation

can be studied by interval analysis (Muhanna and Mullen, 2004).

Another motivation for using the interval approach in this research work is that

interval analysis is intimately connected with the analysis of other uncertainty ap-

proaches, such as fuzzy set theory, random set theory, convex modeling, Dempster-

Shafer structure and probability-bounds approach. Analysis of these uncertainty

models and interval analysis are mutually relevant. For example, a fuzzy number can

be formed from a continuum of intervals corresponding to α levels. This being the

case, the mathematical analysis associated with fuzzy set theory can be performed

as interval analysis on different α levels (Kaufman and Gupta, 1991; Muhanna and

Mullen, 1995, 1999). A Dempster-Shafer structure with interval focal elements can be

viewed as a collection of pairs, each consisting of an interval and a probability mass;

thus the mathematical analysis of Dempster-Shafer structures can be built up using

a series of interval analysis on the Cartesian product of the interval focal elements.

Therefore, the interval FEA developed in this research work can also be applied to

the FEA for the problems with fuzzy set parameters or Dempster-Shafer structures.
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1.3 Uncertainties and Errors in Finite Element

Analysis

The numerical method most frequently used to capture the behavior of complicated

engineering systems appears to be the finite element analysis (FEA), also called the

finite element method (FEM). It has been used extensively in many engineering ap-

plications such as stress analysis, heat transfer, magnetic fields, fluid flows and other

fields.

FEA is a method for numerical solution of the governing partial differential equa-

tions of field problems posed over a domain Ω. In FEA, this domain is replaced by

the union ∪ of subdomains Ωe called finite elements, or simply elements. Elements

are connected at points called nodes. The particular arrangement of elements is called

a mesh. The field quantity is locally (piecewise) approximated over each element by

an interpolation formula expressed in terms of the nodal values of the field quan-

tity. The assemblage of elements represents a discrete analog of the original domain,

and the associated system of algebraic equations represents a numerical analog of

the mathematical model of the problem being analyzed (Reddy, 1993). The solution

for nodal quantities, when combined with the assumed field in any given element,

completely determines the spatial variation of the field in that element (Cook et al.,

2002). These are the two most important concepts of FEA: discretization of the do-

main and approximation of the field quantity using its nodal values. A brief review of

FEA is found in Sec. 3.1. Many excellent texts on FEA are available in the literature

(e.g., Gallagher, 1975; Zienkiewicz, 1977; Reddy, 1993; Bathe, 1996; Cook et al.,

2002).

The accuracy of FEA is affected by errors and uncertainties, which may be related

to the numerical tool itself (discretization, element formulation, equation solver) or to

the physics of the problem. The possible sources of uncertainties and errors in FEA

include model uncertainty, discretization error, parameter uncertainty and rounding
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error (Cook et al., 2002; Bathe, 1996; Oberkampf et al., 2002; Muhanna and Mullen,

2004). The definitions of these uncertainty and errors are summarized in Table 1.2

and presented in the following sections.

Table 1.2: Uncertainty and errors in FEA.

Type Definition/Explanation

Model uncertainty Associated with the appropriateness of the mathematical
model to describe the physical system.

Discretization error Associated with the conversion of the mathematical
model into the computational framework.

Parameter uncertainty Arises because of the inexact knowledge of the input pa-
rameters for the analysis.

Rounding error Numerical errors introduced by the nature of computer
finite precision arithmetic.

1.3.1 Model uncertainty

The first step in FEA selects a mathematical model to represent the physical system

being analyzed. The actual problem is simplified and idealized, and is described by

an accepted mathematical formulation such as the theory of elasticity, or thin-plate

theory, or equations of heat conduction, and so on. The uncertainty about how well

the mathematical model represents the true behavior of the real physical system is

termed model uncertainty. Model uncertainty is a form of epistemic uncertainty.

Typical model uncertainties in FEA are:

• the idealization of the boundary conditions

• the use of plane model rather than three-dimensional model

• the use of linear model rather than nonlinear model

• the use of time-independent model rather than dynamic model
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1.3.2 Discretization error

The established mathematical model is represented by an FE discretization. This

involves selecting a mesh and elements. The computed solution of the FE model is

in general only an approximation of the exact solution of the mathematical model,

and the discrepancy is called discretization error. FEA solution is influenced by a

variety of factors, such as the number of elements used, the nature of element shape

functions, integration rules used, and other formulation details of particular elements.

1.3.3 Parameter uncertainty

Parameter uncertainty arises because the precise data needed for the analysis is not

available. This type of uncertainty is sometimes called parametric uncertainty or

data uncertainty. In FEA, the parameter uncertainty may exist in the geometrical,

material or loading data. Parameter uncertainty may result from a lack of knowledge

(epistemic uncertainty), an inherent variability (aleatory uncertainty) in the parame-

ters, or both.

1.3.4 Rounding error

FEA solution is limited in accuracy by the finite precision of computer arithmetic.

When arithmetic operations are performed on floating point numbers, the exact result

will not, in general, be representable as a floating point number. The exact result

will be rounded to the nearest floating point number, and this loss of information

is referred to as rounding error. To avoid possibly serious rounding errors, FEA

typically requires 12 to 14 digits per word (Cook et al., 2002). A more fundamental

approach, however, is to use interval arithmetic. As introduced in Sec. 1.2.3, interval

arithmetic can rigorously bound the rounding error.
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1.4 Nondeterministic FEA: An Interval Approach

This thesis concentrates on the study of parameter uncertainty in FEA. The study

of model uncertainty and discretization error is beyond the scope of this work. In-

corporating parameter uncertainty in FEA requires a nondeterministic FEA. If the

uncertainty is described within the framework of probability theory, the stochastic

FEA can be used. In the stochastic FEA, the random filed is discretized into a set of

correlated random variables. The problem is to estimate up to the second moments of

the system response. Various methods for stochastic FEA are proposed in the litera-

ture, including Monte Carlo simulation, the weighted integral method, perturbation

method, Neumann series expansion method, improved Neumann expansion, spectral

based method, and others (Ghanem and Spanos, 1991; Haldar and Mahadevan, 2000).

Comprehensive reviews of the stochastic FEA are found in Matthies et al. (1997) and

Keese (2003). A state-of-the-art report on computational stochastic mechanics is

provided by Schuëller (1997) with contributions from many authors.

More recently, a number of nondeterministic FEA based on non-probabilistic un-

certainty modeling have been investigated, including interval FEA and fuzzy FEA.

In interval FEA, the uncertain parameters are described by intervals. Hence, the re-

sponse of the system will be a function of the interval parameters and therefore vary

in an interval. The objective of interval FEA is to estimate the range of the system

response (displacement, stress, etc.) based on the bounds of the input parameters.

The fuzzy FEA is based on the fuzzy representation of the uncertain parameters,

and it is basically an extension of interval FEA, that is, the analysis can be broken

down into a series of interval FEA (Mullen and Muhanna, 1996; Rao and Chen, 1998;

Kulpa et al., 1998; Muhanna and Mullen, 1999; Akpan et al., 2001a,b; Gersem et al.,

2004). For this reason, the fuzzy FEA is also “interval-based” FEA.

The mid-nineties can be considered the period when the main activities for uncer-

tainty treatment in a form of intervals began in the area of computational mechanics
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and when the efforts for development of interval FEA commenced. Since then, inter-

val FEA has become an active area of research and has been studied in a number of

specific research domains:

• Static structural analysis (e.g., Koyluoglu et al., 1995; Muhanna and Mullen,

1995; Mullen and Muhanna, 1996; Rao and Berke, 1997; Rao and Chen, 1998;

Koyluoglu and Elishakoff, 1998; Mullen and Muhanna, 1999; Muhanna and

Mullen, 2001; Möller et al., 2000; Pantelides and Ganzerli, 2001; Akpan et al.,

2001a,b; Chen et al., 2002; Popova et al., 2003; Zhang and Muhanna, 2004;

Pownuk, 2004a; Rao and Liu, 2004)

• Dynamic analysis (e.g., Chen and Rao, 1997; Moens and Vandepitte, 2002;

Dessombz et al., 2001; Modares et al., 2004)

• Geotechnical engineering (e.g., Fetz et al., 1999; Tonon et al., 2000; Peschl and

Schweiger, 2003; Hall et al., 2004)

• Heat transfer problem (Jasiński and Pownuk, 2000; Pereira et al., 2004, e.g., )

A review of the commonly used methods for interval FEA is presented in Chapter 3.

1.5 Objective

The primary objective of this study is to develop an efficient computational framework

for linear static FEA of structures with interval parameters. Particular attention is

given to obtaining rigorous, sharp and efficiently computed bounds on the ranges

of the structural responses. Overestimation in results due to dependence in interval

computation is to be addressed. The developed interval FEA will satisfy the following

requirements:

• Rigorousness. If the exact bounds of the responses ranges are not achievable,

the approximate bounds should be guaranteed to contain the exact ranges of

the responses, That is, enclosures are obtained.
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• Sharpness. Given the rigorousness condition is satisfied, the obtained bounds

of the response range should be tight enough to be practically useful. That is,

the bounds are not overly conservative.

• Computational efficiency. The method should be computationally efficient com-

pared with the existing interval finite element methods.

• Scalability. The accuracy of the method does not deteriorate with the increase

of the problem scale.

1.6 Thesis Organization

This chapter addresses the background of FEA of structures with interval parameters.

The objective is summarized. The remaining contents of the thesis are organized in

the following manner.

Chapter 2 presents the fundamentals of interval arithmetic relevant to the work in

this thesis. The properties of interval arithmetic are discussed. The concept of linear

interval equations is presented. Particular attention is given to the dependence prob-

lem in interval arithmetic, which results in overestimation in the solution. In Chapter

3 a review of the existing solution techniques for linear elastic static interval FEA is

provided. The merits and limitations of each method are discussed, and an argument

is made for an alternative method that can yield rigorous, accurate, and efficiently

computed results. Chapter 4 presents the developed interval FE formulation. The

techniques used are discussed in detail. Chapter 5 presents numerical studies using

the computational framework developed in Chapter 4. The rigorousness, accuracy,

scalability and computational efficiency of the present interval FEA is studied. Chap-

ter 6 summarizes the main findings of the study and presents suggestions for further

work.
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CHAPTER 2

INTERVAL ARITHMETIC

This chapter presents a review of (real) interval arithmetic relevant to the work in

this thesis. The properties of intervals and interval arithmetic are discussed. The

concept of linear interval equations is presented. Information about other aspects

of interval arithmetic, such as nonlinear interval equations and global optimization

using interval analysis, can be found in series of books and publications such as Moore

(1966), Moore (1979), Alefeld and Herzberger (1983), Neumaier (1990), Jaulin et al.

(2001), and Hansen and Walster (2003).

2.1 Notation

In this thesis, boldface will denote interval quantities (interval number, interval vector,

interval matrix). All interval quantities are implicitly real interval quantities. Non-

boldface will denote real (deterministic) quantities. For an interval quantity x or

A, the notation x and A is used to denote a generic (arbitrary) element x ∈ x and

A ∈ A.

2.2 Interval Number

A (real) interval is a nonempty set of real numbers

x = [x, x] = {x ∈ R|x ≤ x ≤ x}, (2.1)

where x and x are the lower and upper bounds (endpoints) of the interval number x,

respectively. x is a generic (arbitrary) element in the interval x. R denotes the set of

all real numbers. If x is a more complex expression, the lower bound and the upper
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bound are also written as

x ≡ inf(x), x ≡ sup(x). (2.2)

The set of all intervals is denoted by IR. To represent an unknown number as an ap-

proximation plus/minus an error bound, the midpoint x̌ of an interval x, is introduced

as

x̌ ≡ mid(x) =
x + x

2
, (2.3)

and the radius of x is defined as

rad(x) =
x− x

2
. (2.4)

Hence x can be represented as

x = [x̌− rad(x), x̌ + rad(x)]. (2.5)

In many cases, the midpoint x̌ is seen as the “nominal” value of the uncertain variable.

If an interval has zero radius it is called thin (degenerated) interval. A thin interval

contains only one real number. A thick interval has a radius greater than zero. If

x̌ 6= 0, x can be decomposed into two parts, the deterministic (midpoint) part x̌ and

the interval part (1 + δ):

x = x̌(1 + δ), (2.6)

where

δ =
x

x̌
− 1 =





[−rad(x)/x̌, rad(x)/x̌], for x̌ > 0,

[rad(x)/x̌, −rad(x)/x̌] , for x̌ < 0.
(2.7)

δ is a zero-midpoint interval, and it is referred to as the interval multiplier of x. δ is

a measurement of the fluctuation of x with respect to its midpoint x̌. In this thesis, if

an interval x is said to have 2% uncertainty (with respect to its midpoint), it suggests

δ = [−0.01, 0.01], and x = x̌(1 + [−0.01, 0.01]).

The width of an interval x is

wid(x) = 2rad(x) = x− x. (2.8)
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The interior of an interval x is defined as

int(x) = {x ∈ R | x < x < x}. (2.9)

The absolute value or the magnitude of an interval is defined as

|x| = mag(x) = max{|x|, |x|}, (2.10)

and the mignitude of x is defined as

mig(x) =





min{|x|, |x|}, if 0 /∈ x

0 otherwise.
(2.11)

An interval x is a subset of an interval y, denoted by x ⊆ y, if and only if y ≤ x

and y ≥ x.

If S is a nonempty bounded subset of R we denote by

♦S := [inf(S), sup(S)] (2.12)

the hull of S, i.e., the narrowest interval enclosing S.

The four elementary operations of real arithmetic, namely addition (+), subtrac-

tion (-), multiplication (×) and division (÷) can be extended to intervals. Operations

◦ ∈ {+,−,×,÷} over intervals are defined by the general rule

x ◦ y = {x ◦ y | x ∈ x, y ∈ y}. (2.13)

It is easy to see that the set of all possible results for x ∈ x and y ∈ y forms a closed

interval (for 0 not in a denominator interval), and the endpoints can be calculated by

x ◦ y = [min (x ◦ y), max (x ◦ y)] for ◦ ∈ {+,−,×,÷}. (2.14)

By noting monotonicity properties of operations (Neumaier, 1990), the lower and

upper bounds of x◦y can be determined from the four possible endpoints x◦y, x◦y,

x ◦ y, and x ◦ y. For addition and subtraction,

x + y = [x + y, x + y],

x− y = [x− y, x− y].
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For multiplication and division, the result depends on the signs of x and y as displayed

in Tables 2.1 and 2.2 (Neumaier, 1990).

Table 2.1: Interval multiplication xy.

if y ≥ 0 and y ≥ 0 if y < 0 < y if y ≤ 0 and y ≤ 0

if x ≥ 0 and x ≥ 0 [xy, xy] [xy, xy] [xy, xy]

if x < 0 < x [xy, xy] [min(xy, xy), max(xy, xy)] [xy, xy]

if x ≤ 0 and x ≤ 0 [xy, xy] [xy, xy] [xy, xy]

Table 2.2: Interval division x÷ y (0 /∈ y).

if y > 0 and y > 0 if y < 0 < y

if x ≥ 0 and x ≥ 0 [x/y, x/y] [x/y, x/y]

if x < 0 < x [x/y, x/y] [x/y, x/y]

if x ≤ 0 and x ≤ 0 [x/y, x/y] [x/y, x/y]

It can also be seen that the only case where more than two real operations are

necessary is the multiplication with both operands containing 0. In all other cases the

two pairs of operands yielding the lower and upper bound can be determined imme-

diately or by case distinctions. Hence, the theoretical overhead for most operations is

a factor of 2. However, if interval supports are implemented directly in the hardware,

zero penalties will be implied (Sun microsystems, 2002).

The following examples illustrate the elementary interval operations:

[1, 2] + [3, 4] = [4, 6], 2/[1, 2] = [1, 2],

[2, 5]− [0, 2] = [0, 5], [1, 2]× [3, 4] = [3, 8],

[−1, 2]([2, 3] + [−4, 5]) = [−1, 2][−2, 8] = [−8, 16],

[−1, 2][2, 3] + [−1, 2][−4, 5] = [−3, 6] + [−8, 10] = [−11, 16].
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2.3 Interval Arithmetic Expression

An interval function is an interval-valued function of one or more interval arguments.

Thus, an interval function maps the value of one or more interval arguments onto an

interval. Consider a real-valued function f(x1, . . . , xn), if an interval-valued function

f(x1, . . . , xn) has the property

f(x1, . . . , xn) = f(x1, . . . , xn) for real arguments,

then f is called an interval extension of f (Moore, 1966). In particular, the natural

interval extension of f is obtained by replacing each real variable xi by an interval

variable xi and each real operation by its corresponding interval arithmetic operation.

If the function f(x1, . . . , xn) is an expression with a finite number of intervals

x1, . . . , xn and interval operations (+,−,×,÷), then it satisfies the fundamental prop-

erty of inclusion isotonicity (Moore, 1966):

if

x1 ⊆ y1, . . . , xn ⊆ yn,

then

f(x1, . . . , xn) ⊆ f(y1, . . . , yn)

A remarkable property of inclusion isotonicity is that the range of a function can be

rigorously estimated by its interval extension function (Moore, 1966):

{f(x1, . . . , xn) | x1 ∈ x1, . . . , xn ∈ xn} ⊆ f(x1, . . . , xn). (2.15)

That means f(x1, . . . , xn) contains the range of values of f(x1, . . . , xn) for all xi ∈
xi (i = 1, . . . , n). For example, consider the function f(x1, x2) = x1 + x2, with

x1 ∈ [1, 2] and x2 ∈ [2, 3]. The bounds of the range of f can be obtained by evaluating

its natural interval extension function

f = x1 + x2 = [1, 2] + [2, 3] = [3, 5].

23



2.4 Dependence Problem

According to Eq. (2.15), the interval evaluation f(x) generally does not provide the

exact range of f , but only an enclosure (outer bound). Clearly, it is desirable to obtain

a sharp enclosure. Unfortunately, in some cases the bounds provided by interval

arithmetic tend to be too conservative: the bounds produced are often much wider

than the true range of the corresponding quantities, often to the point of uselessness.

Consider the arithmetic expression f(x) = x2 − x, with x ∈ [−1, 1]. The attempt

to find the range of f over the interval [−1, 1] by evaluating the natural interval

extension function gives the result

f(x) = x2 − x = [−1, 1]2 − [−1, 1] = [0, 1]− [−1, 1] = [−1, 2].

Since {f(x) = x2 − x = (x− 0.5)2 − 0.25 | x ∈ [−1, 1]} = [−0.25, 2], the range given

by the interval function f contains the exact range, but it overestimates the lower

bound from −0.25 to −1. In general, each occurrence of a given interval variable

in an interval computation is treated as a different, independent variable. After the

subexpression x2 is computed, interval arithmetic does not recognize that the value

of x2 is strongly related to the value of x. Interval arithmetic implicitly makes the

assumption that all intervals are independent, namely it treats x2−x as if evaluating

x2
1 − x2, with x1 = [−1, 1] and x2 = [−1, 1]. This causes widening of the computed

result and makes it difficult to compute the sharp enclosure for complicated interval

expressions.

This unwanted extra interval width is referred to as overestimation due to de-

pendence problem, or simply dependence (Moore, 1966; Neumaier, 1990; Hansen and

Walster, 2003). In general, the dependence problem arises when some interval vari-

ables occur more than once in the computation. For expressions in which all variables

occur only once, the dependence problem is absent and the exact range of the function

is obtained (Moore, 1966).
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In some cases it is possible to reduce the number of occurrences of each variable

to avoid the dependence problem. In the foregoing example, the function f can be

transformed to g(x) = (x−0.5)2−0.25, which is equivalent to f(x) in real arithmetic.

Since x only occurs once in g(x), the interval evaluation of g gives the exact range of

the expression,

g = (x− 0.5)2 − 0.25 = [−1.5, 0.5]2 − 0.25 = [0, 2.25]− 0.25 = [−0.25, 2].

Due to dependence problem, only some of the algebraic laws, valid for real num-

bers, remain strictly valid for interval arithmetic; other laws only hold in a weaker

form. There are two general rules for the algebraic properties of interval operations

(Neumaier, 1990):

1. Two arithmetic expressions which are equivalent in real arithmetic are equiva-

lent in interval arithmetic when every variable occurs only once on each side.

For example, the following laws hold for a, b, c ∈ IR:

a + b = b + a, ab = ba,

(a + b)± c = a + (b± c), (ab)c = a(bc).

2. If f , g are two arithmetic expressions which are equivalent in real arithmetic,

then the interval extension function f ⊆ g holds if every variable occurs only

once in f . For example, if a, b, c ∈ IR, then

a(b± c) ⊆ ab± ac, (a± b)c ⊆ ac± bc, (subdistributivity)

a− b ⊆ (a + c)− (b + c), a/b ⊆ (ac)/(bc), (subcancellation)

0 ∈ a− a, 1 ∈ a/a. (subcancellation)

The dependence problem causes the failure of the distributivity law and the can-

cellation law, and makes it difficult to compute sharp results for complicated interval

analysis. The success of an interval analysis largely depends on the reduction of the

dependence.
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2.5 Interval Vectors and Interval Matrices

An interval matrix A ∈ IRm×n is a matrix whose entries Ajk = [Ajk, Ajk] are inter-

vals, and it is interpreted as the set of all real matrices A ∈ Rm×n with Ajk ∈ Ajk, for

j = 1, . . . , m, k = 1, . . . , n. Rm×n denotes the set of all m× n real matrices. IRm×n

denotes the set of all m× n interval matrices. The lower bound, upper bound, mid-

point, interior, and absolute value of an interval matrix are defined componentwise,

respectively:

A = (Ajk), (2.16)

A = (Ajk), (2.17)

Ǎ = (Ǎjk), (2.18)

int(A) = (int(Ajk)), (2.19)

|A| = (|Ajk|). (2.20)

An n × 1 interval matrix is an interval vector, denoted by IRn. The set of vectors

with n real components is denoted by Rn. An interval vector is also referred to as a

box. Fig. 2.1 shows a two-component interval vector x = ([1, 3], [1, 2])T .

Figure 2.1: The interval vector x = ([1, 3], [1, 2])T .

Operations on interval matrices are extended naturally from the corresponding
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real matrices operations. For instance, if A ∈ IRn×n, B ∈ IRn×n, and x ∈ IRn, then

A + B = (Aij + Bij)16i6n,16j6n (2.21)

A ∗B =

(
n∑

k=1

Aik ∗Bkj

)

16i6n,16j6n

(2.22)

A ∗ x =

(
n∑

j=1

Aij ∗ xj

)

16i6n

(2.23)

Algebraic properties of interval matrix operations are provided in Neumaier (1990),

Apostolatos and Kulisch (1968), and Mayer (1970).

It is noticeable that due to the nature of interval arithmetic, some algebraic laws

valid for real matrix operations only hold in a weaker form in the interval matrix

operations. For example (Neumaier, 1990), let

A =




1 1

0 1


 , B =




1 0

−1 1


 , C =




[−1, 1] 0

0 [−1, 1]


 .

Then

(AB)C =




0 1

−1 1







[−1, 1] 0

0 [−1, 1]


 =




0 [−1, 1]

[−1, 1] [−1, 1]


 ,

and

A(BC) =




1 1

0 1







[−1, 1] 0

[−1, 1] [−1, 1]


 =




[−2, 2] [−1, 1]

[−1, 1] [−1, 1]


 .

It can be seen (AB)C 6= A(BC), i.e., the associative law fails. We have (AB)C ⊆
A(BC).

The following weaker algebraic laws can be presented (Neumaier, 1990):
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Proposition 2.1 (Neumaier 1990)

(AB)C ⊆ A(BC) for A ∈ Rm×n, B ∈ Rn×p, C ∈ IRp×q

(AB)C ⊆ A(BC) for A ∈ Rm×n,B ∈ IRn×p,C ∈ IRp×q

A(BC) ⊆ (AB)C for A ∈ IRm×n, B ∈ IRn×p, C ∈ Rp×q

A(BC) = (AB)C for A ∈ Rm×n,B ∈ IRn×p, C ∈ Rp×q

A(αB) = α(AB) for all α ∈ R, A ∈ IRm×n, B ∈ IRn×p.

In general, for computations involving both real and interval quantities, it is desirable

to delay the interval operations to yield a sharper result. This is very much in the spirit

of Wilkinson (1971), who wrote “In general it is the best in algebraic computations

to leave the use of interval arithmetic as late as possible. . . ”

2.6 Linear Interval Equations

Linear systems of equations are a fundamental part of scientific calculations. In

this section we introduce the concept of linear interval equations. A linear interval

equation with coefficient matrix A ∈ IRn×n and right-hand side vector b ∈ IRn is

defined as the family of linear equations

Ax = b (A ∈ A, b ∈ b). (2.24)

Thus a linear interval equation represents systems of equations in which the coeffi-

cients are unknown numbers ranging in certain intervals. The solution set of (2.24)

is given by:

Σ(A, b) = {x ∈ Rn | ∃A ∈ A, ∃b ∈ b : Ax = b}. (2.25)

In order to guarantee that the solution set Σ(A, b) is bounded, it is required that

the matrix A be regular ; i.e., that every matrix A ∈ A is nonsingular. In general,

the solution set Σ(A, b) has a very complicated shape and is expensive to compute

(Neumaier, 1990). If A ∈ IRn×n is a regular square interval matrix, then the solution
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set is bounded, and the hull of the solution set is defined as the narrowest interval

vector containing Σ(A, b), denoted as

AHb = ♦Σ(A,b). (2.26)

For each A ∈ A, b ∈ b, the equation Ax = b has a unique solution x = A−1b so that

AHb can be expressed as

AHb = ♦{A−1b| A ∈ A, b ∈ b}. (2.27)

However, computing the hull of the solution set for the general case is NP-hard (Rohn,

1995). In practice, the solution of interest is bounding the hull of the solution set; i.e.,

seeking an interval vector x containing AHb, while still sharp enough to be practically

useful:

AHb ⊆ x. (2.28)

x is referred to as the enclosure of the solution set. Obviously x is not unique,

but a sharper enclosure is desirable. If the enclosure is too conservative, it may not

provide any useful information. In this thesis, the “solution of an interval equation”

is defined as “the enclosure of the solution set,” and the “exact solution” is “the hull

of the solution set.”

In some cases an inner bound y of the hull of the solution set is also desirable so

that

y ⊆ AHb ⊆ x. (2.29)

The commonly used methods of solving a linear interval equation include interval

Gauss elimination, interval Gauss-Seidel iteration, and fixed point iteration, discussed

in Sec. 4.2.5.

The concept of the solution set, the hull of the solution set and the enclosure of

the solution set is illustrated in the following example (Neumaier, 1990)
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A =




2 [−1, 0]

[−1, 0] 2


 , b =




1.2

−1.2


 .

Then A represents any real matrix A of the form

A =




2 −α

−β 2




with α, β ∈ [0, 1]. By Cramer’s rule, the analytical solution of Ax = b is

x =




1.2(2− α)/(4− αβ)

1.2(β − 2)/(4− αβ)


 .

The solution set is shown in Fig. 2.2. The four vertices for the solution set are (0.3,

-0.6), (0.6, -0.6), (0.6, -0.3) and (0.4, -0.4), from which can be seen that the hull of

the solution set is

AHb =




[0.3, 0.6]

[−0.6,−0.3]


 .

To obtain an enclosure of the solution set, the above example was solved in Matlab

using the fixed point iteration routine of the Matlab interval arithmetic toolbox b4m

(Zemke, 1998). The enclosure given by b4m is

x =




[0.2398, 0.7202]

[−0.7202,−0.2398]


 ,

and is shown in Fig. 2.2. As expected, the numerically obtained enclosure x is wider

than the hull of the solution set AHb.
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Figure 2.2: Solution set, hull of the solution set, and enclosure of the solution set for
linear interval equation (general case and symmetric case).

In the above example, no dependence between the interval coefficients in A are

considered. Both coefficients α and β are assumed to vary independently between

their bounds. This type of linear interval equation is referred to as non-parametric

linear interval equation. In many applications, however, certain dependence exists

between interval coefficients of the interval matrix, resulting in the parametric lin-

ear interval equation. For instance, assume that the interval matrix A in Eq. (2.30)

stands for symmetric matrices

A =




2 −α

−α 2


 ,

with α ∈ [0, 1]. In this case, the solution set is

Σsym(A, b) = {x ∈ Rn | ∃A ∈ A, ∃b ∈ b : Ax = b with AT = A}.

The analytical solution of Asymx = b is
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x =




1.2(2− α)/(4− α2)

1.2(α− 2)/(4− α2)


 .

According to the above analytical solution, the solution set Σsym(A, b) is a heavy

line indicated in Fig. 2.2, and the hull of the solution set is

AH
symb =




[0.4, 0.6]

[−0.6,−0.4]


 .

Clearly,

AH
symb ⊆ AHb,

that is, the hull of the symmetric case is narrower than the hull of the previous general

case. This example illustrates the importance of accounting for the dependence when

solving for a sharp enclosure of linear interval equations with dependent coefficients.

2.7 Interval Compilers and Programming Envi-

ronments

There is an increasing amount of software support for interval computations. Re-

searchers have developed such software packages in various programming environ-

ments, such as C, C++, Fortran 77, Fortran 90, Pascal, Matlab, Maple, Mathematica

and others. This section introduces some available software tools for interval arith-

metic. More information about interval software and languages can be found at:

http://www.cs.utep.edu/interval-comp/main.html

2.7.1 C/C++ and Fortran

2.7.1.1 Sun Microsystems products

Sun Microsystems, Inc. currently offers both language and hardware support for com-

puting with intervals. Interval arithmetic is intrinsically supported in the Sun ForteTM
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Fortran 95 compiler and C++ compilers. The regular basic arithmetic operations,

intrinsic functions, and logical operations have been extended to intervals.

Hardware support for interval arithmetic is provided in Sun’s UltraSPARC III

processors with the “Set Interval Arithmetic Mode” (SIAM) instructions. Imple-

menting interval-specific hardware instructions for the basic arithmetic operations

(+,−,×,÷) will eliminate the existing performance deficit in the time required to

compute interval versus floating-point expressions (Sun microsystems, 2002).

2.7.1.2 PROFIL/BIAS

PROFIL (Knüppel, 1994b) is a C++ class library supporting the most commonly

needed interval arithmetic and real matrix operations. The supported data types are

INT (integer), REAL, INTERVAL, vectors and matrices of these types, and com-

plex numbers. PROFIL is based on BIAS (Basic Interval Arithmetic Subroutines),

a package which aims to do for interval arithmetic what BLAS (Basic Linear Alge-

bra Subprograms, Dongarra et al. (1988)) has done for non-interval arithmetic; i.e.,

provide an interface for basic vector and matrix operations with specific and fast

implementations for various architectures. The difference between the two is that

all interval operations of PROFIL are independent of the internal representation and

implementation of the interval types.

The PROFIL/BIAS library includes various scalar interval, vector, integer vector,

matrix, interval matrix, and integer matrix operations. It also contains a large selec-

tion of standard functions; e.g., trigonometric and log functions, absolute value, etc.,

as well as utility functions for finding matrix inverses, transposes, identities as well as

some interval vector functions. There are also linear system solvers which compute

the enclosures of solution sets. There is a procedure for using Fortran library func-

tions with the library, and multiple precision arithmetic is also possible. An extension

package called PROFEXT is available which contains miscellaneous functions, test
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matrices, subroutines for local minimization, general linear singly linked lists, auto-

matic differentiation subroutines, sample programs, and instructions on how to adapt

the library to non-supported architectures.

2.7.1.3 C-XSC

C-XSC (Klatte et al., 1993) is a C++ class library for eXtended Scientific Computing.

C-XSC provides the data types of real, interval, complex, and complex interval. For

the scalar data types, vector and matrix types are also available. C-XSC contains the

appropriate arithmetic and relational operators and mathematical standard functions.

The standard functions for the data types interval and complex interval provide range

inclusions which are sharp bounds.

2.7.1.4 INTLIB

INTLIB (Kearfott et al., 1994) is a portable interval arithmetic library written in

Fortran 77. Functionalities of INTLIB include: elementary interval arithmetic such

as interval addition, subtraction, multiplication, division; interval standard functions

such as exponential, logarithmic, trigonometric, inverse trigonometric, and other func-

tions; utility and error-printing functions: data conversion, midpoint, width, absolute

value, and others; and interval set operations: union, intersection, subset, superset,

and others. INTLIB is portable to any commonly used platform. It is freely available

through the Internet. Based on INTLIB, a Fortran 90 library for interval arithmetic

has been published by Kearfott (1995).

2.7.1.5 GlobSol

GlobSol (Global Solutions) is a public domain package written in Fortran 90 that

includes an interval as a user defined data type. GlobSol was designed primarily to be

a global optimization package. It finds all rigorously verified solutions to constrained

and unconstrained global optimization problems. It also finds all rigorously verified
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solutions to algebraic systems of equations. The features of GlobSol includes:

• self-contained interval arithmetic based on INTLIB,

• automatic differentiation based on operator overloading,

• an advanced combination of techniques including constraint propagation, an

innovative method of finding approximate feasible points, epsilon inflation in

verification, set complementation techniques to avoid large clusters of boxes,

and a careful consideration of stopping criteria and tolerance.

GlobSol is freely available through the Internet at: http://www.mscs.mu.edu/~globsol

2.7.2 Matlab

2.7.2.1 b4m

b4m (Zemke, 1998) is a free interval arithmetic toolbox for Matlab. It has been tested

under Matlab 5.1, Matlab 5.2 and Matlab 5.3 with Windows and Unix systems. The

toolbox b4m has been designed

• to use the ANSI C interval arithmetic library BIAS (Knüppel, 1994a) in an

interactive way and

• to add interval arithmetic operations and inclusion algorithms to the standard

floating point environment Matlab.

The toolbox b4m consists of a new data type interval and of arithmetical operations

between arguments of type double and interval. The elementary operations are per-

formed using BIAS developed by Knüppel (1994a). The toolbox b4m tries to combine

the efficiency of BIAS and the ease of use of Matlab. The interface between BIAS

and Matlab is implemented Mex-files. The user interface consists of ordinary M-files.
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2.7.2.2 INTLAB

INTLAB (Rump, 2002; Hargreaves, 2002) is a Matlab toolbox for interval arithmetic.

It is comprised of

• interval arithmetic for real and complex data including scalars, vectors, matri-

ces, and sparse matrices;

• automatic differentiation

– gradients to solve systems of nonlinear equations,

– Hessians for global optimization;

• rigorous interval standard functions;

• rigorous input and output;

• multiple precision interval arithmetic.

INTLAB is written entirely in Matlab code to assure best portability. INTLAB also

makes extensive use of BLAS (Basic Linear Algebra Subprograms, Dongarra et al.

(1988)) to assure fast computing time, comparable to pure floating point arithmetic.

2.7.3 Maple

intpak and intpakX (Krämer and Geulig, 2001) are interval packages for Maple. The

package intpak is comprised of the following features:

• interval data type as basic data type for interval computations, accompanied

by functions for interval construction and conversion,

• basic arithmetic operations,

• basic interval functions (root and power, exponential function and logarithm,

trigonometric functions).
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The package intpakX is based on intpak. It introduced a wide range of additional

features:

• interval Newton method,

• range enclosure for real-valued functions of one or two real variables,

• graphic output for the implemented methods.

The package intpakX is distributed as a share library with Maple.
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CHAPTER 3

INTERVAL FEA: LITERATURE REVIEW

This chapter presents a review of the commonly used methods for linear static interval

finite element analysis. The merits and limitations of each method are discussed.

3.1 Deterministic FEA

We start with the brief review of the deterministic finite element method. In this

section, Einstein’s summation convention over repeated indices is enforced for the

equations expressed in index notation.

Consider a body of quasistatic linearly elastic material. The governing differential

equations of equilibrium for this problem are

σij,j + Fi = 0, (3.1)

with some essential boundary conditions and natural boundary conditions.

In Eq. (3.1), σij is the stress tensor and Fi is the body force. The natural boundary

conditions involve surface tractions

φi = σijnj on Γ (3.2)

where φ is the traction force acting on a surface with outward unit normal n, and

Γ is the surface on which traction forces are prescribed. Some concentrated loads pc

may also be applied on the boundary.

The linearized strain-displacement relations are

εij =
1

2
(ũi,j + ũj,i) (3.3)
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where εij is the strain tensor, and ũi represents the displacement, where a tilde is

used to distinguish the “exact” displacement field from the nodal displacements in

finite element analysis.

Finite element formulation can be obtained using variational methods or weighted

residual methods (Gallagher, 1975; Zienkiewicz, 1977; Bathe, 1996; Cook et al., 2002).

In solid mechanics, the principle of stationary potential energy is often used. The

principle of stationary potential energy states that (Cook et al., 2002) “Among all

admissible configurations of a conservative system, those that satisfy the equations of

equilibrium make the potential energy Π stationary with respect to small admissible

variations of displacement”. According to the principle of stationary potential energy,

one has

Π =

∫

Ω

1

2
σT ε dV −

∫

Ω

ũT F dV −
∫

Γ

ũT φ dS − uT pc, (3.4)

δΠ = 0. (3.5)

Eq. (3.4) is the total potential energy written in matrix form. Eqs. (3.4) and (3.5)

can be seen as the variational formulation (weak form) of the governing differential

equations of equilibrium (strong form).

For linear elastic conditions, the stress-strain relations can be stated in matrix

form as

σ = C(ε− ε0) + σ0 (3.6)

where C is the elasticity matrix, ε0 and σ0 are initial strains and initial stresses,

respectively. Substitution of Eq. (3.6) into Eq. (3.5) gives

Π =

∫

Ω

(
1

2
εT Cε− εT Cε0 + εT σ0

)
dV −

∫

Ω

ũT F dV −
∫

Γ

ũT φ dS − uT pc, (3.7)

In FEA the domain Ω is discretized into subdomains Ωe (elements). The boundary

of Ωe is denoted as Γe. Thus Eq. (3.7) is broken into element contributions and
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becomes

Π =
Ne∑
i=1

∫

Ωe

(
1

2
εT Cε− εT Cε0 + εT σ0

)
dV −

Ne∑
i=1

∫

Ωe

ũT F dV −
Ne∑
i=1

∫

Γe

ũT φ dS−uT pc

(3.8)

in which Ne is the number of elements.

In the displacement-based finite element method, the displacements ũ within ele-

ment i are interpolated from element nodal displacement vector (ue)i by

ũ = N(ue)i (3.9)

where N is the shape function matrix.

The strain is determined from the displacement field according to the strain-

displacement relations in Eq. (3.3). For the interpolated displacement field, the strain

is obtained from the nodal displacement u as

ε = Bu (3.10)

where B is the strain-displacement matrix. Substitution of Eqs. (3.9) and (3.10) into

Eq. (3.8) yields

Π =
1

2

Ne∑
i=1

(ue)
T
i ki(ue)i −

Ne∑
i=1

(ue)
T
i (pe)i − uT pc (3.11)

in which ki and (pe)i are respectively the stiffness matrix and load vector of i-th

element:

ki =

∫

Ωe

BT CB dV, (3.12)

pe =

∫

Ωe

NT F dV +

∫

Γe

NT φ dS +

∫

Ωe

BT Cε0 dV −
∫

Ωe

BT σ0 dV. (3.13)

To express Eq. (3.11) as a function of the structure nodal displacement u, the

element nodal displacement (ue)i is written as

(ue)i = Liu (3.14)
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where the matrix Li is referred to as element Boolean connectivity matrix. Li contains

only zeros and ones, and it has size ni by n where ni is the number of degrees of

freedom (d.o.f.) in element i and n is the total number of d.o.f. in the structure.

Substitution of Eq. (3.14) into Eq. (3.11) provides

Π =
1

2
uT

(
Ne∑
i=1

LT
i kiLi

)
u− uT

Ne∑
i=1

LT
i (pe)i − uT pc (3.15)

Making Π stationary with respect to u gives the structural equations
(

Ne∑
i=1

LT
i kiLi

)
u = pc +

Ne∑
i=1

LT
i (pe)i (3.16)

or

Ku = p. (3.17)

where K is the structure stiffness matrix,

K =
Ne∑
i=1

LT
i kiLi. (3.18)

The structure load vector p is composed of two parts:

p = pc + pb, (3.19)

in which pc = externally applied concentrated loads on structure nodes, pb = nodal

load contributions from all elements, and is obtained as

pb =
Ne∑
i=1

LT
i (pe)i (3.20)

Eq. (3.17) is solved for the system nodal displacement u. For stresses in each

element, they can be recovered from Eq. (3.6) with ε = Bu.

3.2 Interval FEA

Interval FEA, as the name suggests, can be viewed as an extension to the foregoing

deterministic FEA. The main difference is that in interval FEA, some system para-

meters are intervals, such as the modulus of elasticity, cross-sectional area, or loads.
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Both the stiffness matrix K and the load vector p may contain the interval para-

meters. Hence, the response of the system will be a function of interval parameters

and therefore varies in an interval range itself. The problem herein is to estimate

the range of the system response, which may include nodal displacements, element

stresses and/or strains.

If the only interval parameter is the applied load, the problem becomes easier as

the system matrix K does not involve intervals and the exact range of the system re-

sponses can be obtained without difficulties. Mullen and Muhanna (1999) developed

an interval arithmetic based algorithm for this purpose. The structural responses un-

der worst case load patterns are obtained efficiently. Based on the work of Mullen and

Muhanna (1999), Saxena (2003) studied all possible load patterns for large and com-

plicated structures. Pantelides and Ganzerli (2001) used the superposition method to

solve linear elastic problems with interval load. The results were compared with the

one obtained using the interval method of Mullen and Muhanna (1999). The com-

parison showed both methods yielded the exact solution. However, the superposition

method is less efficient, especially for problems with a large number of interval loads.

Another special case is the analysis of statically determinate structures (truss,

beam and frame) with interval stiffness. In this case, the structural internal forces are

independent of the structural stiffness. Although the structural stiffness is uncertain,

the structural internal forces do not change with the stiffness. This characteristic

has been exploited in Muhanna and Mullen (2001) to analyze statically determinate

structures with interval stiffness. The Lagrange multiplier method was used, and the

exact range of displacement was obtained.

More difficult, however, is the general case when both the stiffness matrix K and

the load vector p involve intervals. In such a case, the exact range of the system

response is difficult to obtain. In practice, the solution of interest is to estimate an

outer bound of the true response range.
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This chapter summarizes the commonly used methods for linear static interval

FEA, including closed-form solution, combinatorial method, perturbation method,

sensitivity analysis method, optimization method, and Monte Carlo sampling method.

3.2.1 Closed-form solution

In this method, the problem is solved analytically, and the expressions of the responses

are obtained. The expressions are converted to interval expressions by replacing each

real parameter αi by the interval parameter αi, and evaluating them using interval

arithmetic. If any interval parameter occurs more than once in the expressions, there

is possible overestimation in the result due to the dependence problem. In such a case,

the analyst should reformulate the expressions to reduce the number of occurrences

of the same interval parameters, when possible.

This method was used in Rao and Berke (1997), Kulpa et al. (1998), Muhanna

and Mullen (2001), Corliss et al. (2004) for linear static structural analysis. The

closed form solution is only possible in very simple problems; therefore, this method

does not provide a sufficiently general methodology for the interval FEA.

3.2.2 Combinatorial method

If f(α1, . . . , αm) denotes a monotonic function of the parameters within the intervals

α1, . . . , αm, the range of f can be determined by considering all possible combinations

of the bounds of the interval parameters. Let the interval parameters αi be denoted

as an interval number as

αi = [αi, αi] = [α
(1)
i , α

(2)
i ].

Introducing all possible combinations of the bounds of the interval parameters into

analysis:

fr = f(α
(i)
1 , α

(j)
2 , . . . , α

(s)
m ),

i = 1, 2; j = 1, 2; . . . s = 1, 2; r = 1, 2, . . . , 2m
(3.21)
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where fr denotes the value of f for a particular combination of the bounds of the

intervals α1, . . . , αm. The range of function f can be represented as an interval

number as

[f, f ] =

[
min(fr)

r=1,2,...,2m

, max(fr)
r=1,2,...,2m

]
. (3.22)

The primary advantage of this method is that it is straightforward to apply to interval

FEA. Any existing deterministic finite element code can be used for the calculations in

Eq. (3.21). The combinatorial method was used in Muhanna and Mullen (1995), Rao

and Berke (1997), Ganzerli and Pantelides (1999) for linear static structural analysis.

However, it must be noted that the combinatorial method gives exact response range

only if the system response is monotonic with respect to each parameter in its interval

range. For the general case of FEA when the stiffness matrix involves intervals,

the monotonicity is not guaranteed (McWilliam, 2000), and the interval obtained in

Eq. (3.22) is only an inner bound of the true response range. Further, this method

has exponential complexity. The computational cost increases exponentially with the

number of interval parameters. For m interval parameters, there are 2m combinations

for which the deterministic FEA has to be performed. The exponential complexity

limits the applicability of the combinatorial method to rather small systems.

It is worthwhile to point out that the hull of a general non-parametric linear

interval equation Ax = b can be obtained by solving for all possible combinations of

the upper and lower bounds of the interval coefficients of the matrix A and vector

b (Kulpa et al., 1998). However, this method is not applicable to interval FEA.

Firstly, this algorithm is of exponential complexity. Consider a linear interval system

of equations with an interval coefficient matrix A ∈ IRn×n and an interval right-

hand vector b ∈ IRn. When all coefficients in A and b are intervals, the algorithm

must solve 2n2+n linear systems of n equations; hence, its practical value is small.

Secondly, this algorithm assumes all coefficients in A are independent. However, the

coefficients of the interval stiffness matrix are dependent on each other through the
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interval parameters. As a consequence of not accounting for dependence, this method

computes excessively conservative bounds of the response range.

3.2.3 Perturbation method

The basic idea behind perturbation method is to calculate the changes to the responses

that takes place when a small change (perturbation) is made to the original system.

Consider the equilibrium equations that arise in the static finite element analysis

K0u0 = p0 (3.23)

where K0 is the nominal (unperturbed) stiffness matrix of the finite element assem-

blage, p0 is the nominal load vector, and u0 is the nominal displacement vector.

When the input parameters have small changes, the stiffness matrix and load vector

will change to K0 + ∆K and p0 + ∆p. ∆K and ∆p denote the small changes to the

structure stiffness matrix and load vector, respectively. According to Chen (1999),

the perturbed system can be written as

(K0 + ∆K)(u0 + ∆u) = p0 + ∆p. (3.24)

Expanding Eq. (3.24) gives

K0u0 + K0∆u + ∆Ku0 + ∆K∆u = p0 + ∆p. (3.25)

Neglecting the higher order part ∆K∆u and using Eq. (3.23), one fines that

∆u ≈ K−1
0 (∆p−∆Ku0). (3.26)

Then the displacement of the perturbed system can be approximated by

u = u0 + ∆u ≈ u0 + K−1
0 (∆p−∆Ku0). (3.27)

Qiu and Elishakoff (1998) used the first-order perturbation method and interval arith-

metic to determine the bounds of static displacements of structures under interval
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modulus of elasticity and interval loads. This method does not consider the depen-

dence that exists between the interval coefficients of the stiffness matrix and load

vector, therefore, the obtained result is overly conservative. To handle the depen-

dence problem, a perturbation method incorporated with Taylor series expansion

was used in the work of McWilliam (2000) for analysis of truss structures with inter-

val cross-sectional area and interval load. Assume there are m uncertain parameters

in the system, where the i -th uncertain parameter is denoted by αi and its nominal

value by α0i. ∆K and ∆p are expressed as a first-order Taylor series

∆K =
m∑

i=1

(αi − α0i)
∂K

∂αi

∣∣∣
αi=α0i

(3.28)

∆p =
m∑

i=1

(αi − α0i)
∂p

∂αi

∣∣∣
αi=α0i

(3.29)

Substitution of Eqs. (3.28) and (3.29) into (3.26) gives

∆u =
m∑

i=1

λ(i)(αi − α0i) (3.30)

where λ(i) is a vector such that

K0λ
(i) = (

∂p

∂αi

∣∣∣
αi=α0i

−∂K

∂αi

∣∣∣
αi=α0i

u0). (3.31)

Eq. (3.30) is linear in terms of (αi − α0i). Thus the upper and lower bounds for ∆uj

are obtained as

(∆uj) =
m∑

i=1

λ
(i)
j (bij − α0i), (3.32)

(∆uj) =
m∑

i=1

λ
(i)
j (cij − α0i), (3.33)

respectively, where

bij =





αi if λ
(i)
j ≥ 0,

αi if λ
(i)
j < 0,

(3.34)

cij =





αi if λ
(i)
j < 0,

αi if λ
(i)
j ≥ 0.

(3.35)
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This method uses the concept of interval to describe uncertainty, but all computations

are deterministic. A similar first-order perturbation analysis and Taylor series method

was also used in Chen and Yang (2000) and Chen et al. (2002) to calculate bounds

on static displacements of structures with interval modulus of elasticity and interval

cross-sectional area.

The main advantage of the perturbation method is its analytical tractability. The

disadvantage is that the bounds obtained by perturbation analysis are not guaran-

teed to enclose the true response range, since the higher order term is neglected in

Eq. (3.26). Moreover, the perturbation method is justified by the assumption that

the perturbation is small. As the parameter variations become large, the estimation

based on Eqs. (3.32) and (3.33) will become increasingly inaccurate.

3.2.4 Sensitivity analysis method

The sensitivity analysis method determines the bounds of the structural responses

based on the obtained knowledge about the monotonicity of the responses with respect

to the system parameters. If the displacement ui is monotonically increasing in the

interval αj, then the derivative
∂ui

∂αj

is always positive. In this case, the maximum

of ui is attained when αj = αj. Similarly, if the response ui is decreasing in αj, the

maximum of ui is attained when αj = αj.

Consider the static finite element equation

Ku = p. (3.36)

Let the system parameters described by a vector α = (α1, . . . , αm)T . The displace-

ment sensitivity with respect to αj can be obtained as

∂K

∂αj

u + K
∂u

∂αj

=
∂p

∂αj

(3.37)

Rearranging (3.37) gives

K
∂u

∂αj

=
∂p

∂αj

− ∂K

∂αj

u, (3.38)
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and

∂u

∂αj

= K−1

(
∂p

∂αj

− ∂K

∂αj

u

)
. (3.39)

Eq. (3.39) can be used to evaluate the sensitivity in the vicinity of a point. How-

ever, it is very difficult to study the sensitivity over the entire interval ranges of the

parameters. Jasiński and Pownuk (2000) proposed an algorithm with an attempt to

check the system’s monotonicity over the entire interval ranges of the parameters.

The algorithm is presented as the following:

Step 1: Compute an enclosure u of the solution set of Ku = p.

Step 2: Compute an enclosure of the solution set
∑ (

K,
∂p

∂αj

− ∂K

∂αj

u

)
,

assign
∂u

∂αj

= enclosure of
∑ (

K,
∂p

∂αj

− ∂K

∂αj

u

)
.

Step 3: If the upper bound of
∂u

∂αj

is ≤ 0, then
∂u

∂αj

≤ 0 in the whole interval region;

if its lower bound is ≥ 0, then
∂u

∂αj

≥ 0 in the whole interval region.

The above algorithm was applied in Jasiński and Pownuk (2000) for interval FEA

of heat transfer in biological tissue. Popova et al. (2003) used the similar algorithm

for FEA of simple composite material with interval modulus of elasticity. Although

the above algorithm theoretically can be used to check the monotonicity over the

entire interval ranges of the parameters, it is very difficult to apply in practice. The

algorithm requires the calculation of the enclosures of a series of parametric linear

interval equations in Step 1 and Step 2. For m interval parameters, it needs to

solve m+1 parametric linear interval equations, which is computationally expensive.

Moreover, the success of this algorithm relies on the sharpness of the enclosures of

the m+1 linear interval equations in Step 1 and Step 2. If the enclosures obtained in

Step 1 and Step 2 are not sharp, this algorithm may yield an excessively conservative

sensitivity
∂u

∂αj

with negative lower bound and positive upper bound, which does not
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provide useful information about the monotonicity property. Therefore this algorithm

is of little practical use for interval FEA.

Pownuk (2004a) has introduced the sensitivity analysis to linear static FEA for

large scale truss structures with interval stiffness, under the assumption that the

displacements are monotonic with respect to each parameter in its interval range. The

monotonicity is checked at the midpoint of the interval parameter, and is assumed

valid over the entire interval. After determination of the monotonicity, the bounds

of displacements can be easily computed. In the algorithm of Pownuk (2004a), the

derivatives
∂ui

∂αj

are calculated at the midpoint of the interval parameter to determine

the monotonicity. Kreinovich et al. (2004) proposed an algorithm to determine the

monotonicity without calculating the derivatives:

Step 1: Use the midpoint value α̌1, . . . , α̌m of the interval parameter α1, . . . , αn,

compute the response u0.

Step 2: For the parameter αi, modify the input to α′i 6= αi, and leave other parameter

in their midpoints. Compute the response u′. By comparing the values of u0

and u′, it can be determined whether u is increasing or decreasing in αi. Repeat

this step for everey parameter αi, i = 1, . . . ,m.

Step 3: Use the value α−1 , . . . , α−m to calculate the lower bounds of u, and the value

α+
1 , . . . , α+

m to calculate the upper bounds of u, where

• for the parameter αi for which u increases with αi, α−i = αi and α+
i = αi,

• for the parameter αi for which u decreases with αi, α−i = αi and α+
i = αi.

The sensitivity analysis method is justified by the assumption that the response u

is monotonic with respect to each parameter in its interval range. As mentioned

previously in Sec. 3.2.2, the monotonicity assumption is not always satisfied. In the

case when monotonicity is not valid, this method fails to provide a solution enclosure,
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but a good inner bound usually can be obtained when the uncertainties are small.

Another disadvantage of this method is that it is computationally very expensive for

problems with a large number of interval variables (Pownuk, 2004a). The inefficiency

of the sensitivity analysis method will also be demonstrated in the example in Sec. 5.4.

3.2.5 Optimization method

Another way to find the bounds of the response is to perform two optimizations to

compute the minimal and maximal responses when each parameter αi is constrained

to belong to an interval αi. A number of works have been developed to formulate

interval FEA as an optimization problem.

Koyluoglu et al. (1995) analyzed frames with interval bending rigidity and in-

terval loads. The interval element stiffness matrix and interval element load vector

were developed. The resulting interval structural equation was solved by the triangle

inequality and the linear programming method (Oettli, 1965). Consider the interval

system equilibrium equation

Ku = p (3.40)

with K = [Ǩ − ∆K, Ǩ + ∆K] and p = [p̌ − ∆p, p̌ + ∆p], K ∈ IRn×n, p ∈ IRn,

∆K ∈ Rn×n, ∆p ∈ Rn. According to Oettli (1965), the satisfaction of the following

inequality is necessary and sufficient for u to be in the solution set of Eq. (3.40):

|Ǩu− p̌| ≤ ∆K|u|+ ∆p (3.41)

which is equivalent to

Ǩu−∆K|u| ≤ p̌ + ∆p, (3.42)

and

Ǩu + ∆K|u| ≥ p̌−∆p. (3.43)

Eqs. (3.42) and (3.43) represent a set of 2n inequalities. The minimal and maximal

values of u can be found by solving the 2n coupled linear programming problems.
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The above algorithm was also presented in the work of Rao and Berke (1997),

Kulpa et al. (1998) for linear static structural problems. The main drawback of this

method is that it assumes all interval coefficients in the stiffness matrices vary inde-

pendently within their bounds. This assumption violates the physics of the problem.

The coefficients of K are dependent on each other through the parameter vector α.

As a consequence of not accounting for dependence, this method computes overly

conservative results. In the frame example given in Koyluoglu et al. (1995), only one

element possesses interval bending rigidity. As the number of interval parameters

increase, the overestimation in the results will be more serious.

Koyluoglu and Elishakoff (1998) introduced a comparison of stochastic FEA and

interval FEA applied to a shear frame exhibiting uncertain bending rigidity. For the

interval model, the bounds of the displacement were computed from optimizations.

No detail information was provided about the optimization method used in this work.

As in his previous work (Koyluoglu et al., 1995), dependence was not taken into

account in the interval stiffness matrix.

Rao and Chen (1998) developed a Taguchi-oriented search algorithm with an at-

tempt to find the optimum settings of the parameters which yield min/max responses.

In one of the examples they showed that 64 operations were needed to obtain the so-

lution, where 128 operations are required by the combinatorial method. That shows

the inefficiency of the algorithm, especially in large size problems; and the accuracy

of the result is limited to narrow interval parameters only.

Möller et al. (2000) developed an optimization algorithm combining evolution

strategy, the gradient method and Monte-Carlo method. The optimization algorithm

was applied to both static and dynamic linear/nonlinear structural analysis. The

accuracy of the method is not clear since the exact solution was not presented in the

paper.

A response surface methodology was used in the work of Akpan et al. (2001b).
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The mapping of input parameters to output responses in FEA was approximated

by a simple response surface function. Combinatorial optimization was performed

on the response surface function to determine the combination of the variables that

result in the min/max responses. Validation of the response surface function was not

presented in that paper.

Although theoretically interval FEA can be formulated as an optimization prob-

lem, the implementation turns out to be far from trivial in general. Firstly, it requires

an efficient and robust optimization algorithm. In most FE problems the objective

function is nonlinear and complicated, so that often only an approximate solution is

achievable. The obtained solution is not always a global optimum. Secondly, the op-

timization method is computationally expensive. For each response quantity, usually

two optimization problems have to be solved to find the minimal and maximal values.

Therefore, the optimization method is best suited for small problems with a limited

number of uncertain parameters.

3.2.6 Monte Carlo sampling method

The Monte Carlo sampling method involves sampling from the intervals of input

parameters with hope that the samples will fall sufficiently close to the values giving

extremal system responses. If the number of samples is large enough, the lower and

upper bounds of the solution set of the simulations could be a good approximation

for the actual response range. Since the interval parameters do not have probability

information, a probability distribution over the interval should be assumed for the

sampling purpose. The distribution can be chosen arbitrarily. In practice, a uniform

distribution over the interval is often chosen for convenience. The algorithm for Monte

Carlo sampling method is summarized as the following:

Step 1: For j from 1 to N :
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• for i from 1 to m, run a random number generator using a uniform distri-

bution on the interval [αi, αi] and store the result in α
(j)
i ;

• using α
(j)
1 , . . . , α

(j)
m , run the deterministic FEA and store the result in u(j).

Step 2: The lower and upper bounds are obtained as:

• u = min(u(1), . . . , u(N)),

• u = max(u(1), . . . , u(N)).

In the above algorithm, N is the number of samples, and m is the number of interval

parameters. The Monte Carlo sampling method has been used in Koyluoglu et al.

(1995), Dessombz et al. (2001), and Kulpa et al. (1998) for the evaluation of alter-

native methods. The advantage of the Monte Carlo sampling is its convenience to

implement. All computations are deterministic. The accuracy is improved with the

increase of the number of samples. The disadvantage of this method is its computa-

tional inefficiency: it requires a large number of deterministic analysis. Moreover, by

its nature, Monte Carlo method samples only a finite number of scenarios, thus the

obtained bounds are always inner bounds of the response ranges.

3.3 Need for Alternative Interval FEA

The above review shows that there are still many limitations in the prior works of

interval FEA. Most methods, such as the combinatorial method, sensitivity analysis

method and Monte Carlo sampling do not guarantee to bound the true response

ranges. Only inner bounds are obtained by these methods. On the other hand, a

few methods (e.g., Koyluoglu et al., 1995; Jasiński and Pownuk, 2000; Popova et al.,

2003) can obtain outer bounds of the response ranges, but the results tend to be

excessively conservative with the increase of problem complexity. Another limitation

is the computational cost. The methods such as combinatorial method and sensitivity

analysis method are computationally very expensive. Therefore,thus there is a need
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for a computationally efficient method for interval FEA that is capable of accounting

for uncertain parameters and yielding rigorous and sharp bounds on the ranges of the

structural responses. It is the aim of this thesis to develop an interval FEA addressing

the following requirements:

• Rigorousness. If the exact range of the system responses are not achievable, the

approximate solution should be guaranteed to enclose the exact ranges of the

responses; i.e., an outer bound is obtained.

• Sharpness. Given the rigorousness condition is satisfied, the obtained solution

should be tight enough to be practically useful; that is, the solution should not

be excessively conservative.

• Computational efficiency. The interval FEA should be computationally efficient

compared with previous works.

• Scalability. The accuracy of the interval FEA does not deteriorate with the

increase of the problem scale and complexity.
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CHAPTER 4

INTERVAL FEA: DEVELOPMENT AND

IMPLEMENTATION

As seen in the previous chapter, one of the major limitations of existing methods for

FEA with interval parameters is that the obtained result is not guaranteed to enclose

the exact response range. Although intervals are used to describe uncertainties, most

existing methods for interval FEA do not, or just in some certain steps, use interval

arithmetic for computations. In Chapter 2 it was noted that interval arithmetic

guarantees to produce an enclosure (outer bound) for the range of a function over

whole sets of arguments. This characteristic of interval arithmetic motivates us to

develop an interval FEA using interval arithmetic. This methodology can be referred

to as “interval arithmetic FEA.”

Conceptually, the interval arithmetic FEA consists of the same computational pro-

cedures as the deterministic FEA: (1) formulation of element matrices, (2) assembly

of elements into a structure matrix, (3) application of loads and boundary conditions,

and (4) solution of structural equations. The main difference between the interval

arithmetic FEA and the deterministic FEA is that, in the former, some parameters

are uncertain and described by intervals, such as material parameters, cross-sectional

geometry and load parameters. Hence, the response of the structure will be a function

of interval parameters and varies in an interval range itself. The problem herein is to

use interval arithmetic to obtain an enclosure for the range of the system response,

which may include nodal displacements, element nodal forces and/or stresses. As

described in Sec. 2.4, the major challenge of interval computations is to reduce the
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overestimation in the results due to the dependence problem, which is peculiar to in-

terval arithmetic. The effectiveness of an interval arithmetic FEA depends to a large

degree on the reduction of overestimation. To obtain a sharp result, it is essential to

(a) reduce the occurrences of the same interval variables in the compu-

tations, and

(b) place the use of interval arithmetic as late as possible in “mixed” com-

putations (the computations involving both real and interval quan-

tities).

The conventional formulation of FEA, however, is not suitable for the above purposes,

as will be demonstrated in Sec. 4.1. New formulation will be developed.

This chapter discusses the development and implementation of the present interval

FEA in the context of static linear elastic structural behavior. The concepts of

deterministic FEA, such as the derivation of element stiffness matrices and coordinate

transformation, are not discussed in detail. Many excellent texts are available for

deterministic FEA (e.g., Gallagher, 1975; Zienkiewicz, 1977; Reddy, 1993; Bathe,

1996; Cook et al., 2002).

4.1 Näıve interval arithmetic FEA

A natural idea to implement interval FEA is to convert the deterministic FE for-

mulation by replacing each real parameters with interval parameters and each real

operation by its corresponding interval arithmetic operation. This idea is attrac-

tive due to its ease of implementation. Unfortunately, such a näıve use of interval

arithmetic in FEA (näıve interval FEA) often yields meaningless and overly wide

results (Muhanna and Mullen, 1995; Kulpa et al., 1998; Muhanna and Mullen, 2001;

Dessombz et al., 2001).

Consider the two-bar structure shown in Fig. 4.1. Only axial displacements are

allowed. The structure is subjected to two concentrated loads at node 2 and 3. The
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Figure 4.1: Two-bar structure.

cross-sectional area is denoted as A, the modulus of elasticity as E, and the length of

the element as L. Subscripts indicate element number. Stiffnesses of the respective

elements are k1 and k2, where ki = EiAi/Li, i = 1, 2. The structural equation for

this example is

Ku = p (4.1)

or




k1 + k2 −k2

−k2 k2







u1

u2


 =




p1

p2


 (4.2)

in which u1 and u2 are the axial displacements of node 2 and node 3, respectively.

Assume the stiffness terms k1 and k2 are uncertain and represented by two interval

variables k1 = [0.95, 1.05] and k2 = [1.9, 2.1]. The loads are considered deterministic,

p1 = 0.5 and p2 = 1.0. Substituting k1 and k2 in Eq. (4.2) gives the interval system

equation




[2.85, 3.15] [−2.1,−1.9]

[−2.1,−1.9] [1.9, 2.1]







u1

u2


 =




0.5

1


 . (4.3)

Eq. (4.3) is a linear interval equation. Using the fixed point iteration (see Sec. 4.2.5.4)

routine provided in the Matlab interval arithmetic toolbox b4m (1998), u1 and u2
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are obtained as:

u1 = [−0.0521, 3.0521],

u2 = [0.0983, 3.9017].

On the other hand, the exact ranges of u1 and u2 can be achieved by solving (4.2)

analytically. The inverse of K is

K−1 =




1

k1

1

k1

1

k1

k1 + k2

k1k2


 .

Thus, the displacements are obtained as

u1 =
p1

k1

+
p2

k1

=
p1 + p2

k1

=
1.5

[0.95, 1.05]
= [1.4286, 1.5789],

u2 =
p1

k1

+
(k1 + k2)p2

k1k2

=
p1 + p2

k1

+
p2

k2

=
1.5

[0.95, 1.05]
+

1

[1.9, 2.1]
= [1.9048, 2.1053].

Note that the above interval expressions are written in such a way that each interval

variable only appears once. Therefore, the dependence problem is avoided and the

exact ranges of the expressions are obtained.

Clearly, although the bounds obtained by the näıve interval FEA contain the

exact range, they are too conservative to provide useful information. The näıve

interval FEA could not even get the correct sign for the lower bound of u1. Interval

arithmetic implicitly made the assumption that all interval coefficients in the stiffness

matrix vary independently between their bounds. For instance, it treats two interval

numbers [−2.1,−1.9] in Eq. (4.3) as two independent interval variables that happen

to have the same endpoints. From a physical point of view, these two coefficients

are −k2 in Eq. (4.2), and they have to take the same value. It is critical to the
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formulation of the interval FEA to identify interval numbers that represent a single

physical parameter and prevent the widening of results.

4.2 Computational Procedures

In this section we elaborate on the steps that are involved in the present interval finite

element analysis. The following techniques have been developed for the analysis:

• Factorization of interval parameters out of the element stiffness matrices.

• Element-By-Element (EBE) technique for element assembly.

• Penalty functions and Lagrange multipliers for imposition of constraint condi-

tions.

• Fixed point iteration for the solution of the interval structural equations.

• Symbolic manipulations of expressions to avoid dependence in interval compu-

tations.

These techniques are generally applicable to the interval FEA, regardless of element

type. As specific applications, Sec. 4.2.8 discusses frame analysis under interval mod-

ulus of elasticity, interval cross-sectional area, interval moment of inertia and interval

loads at the same time. Sec. 4.2.9 discusses plane stress and plane strain problems of

isotropic material with interval modulus of elasticity and interval loads.

In an interval finite element model, the following two scenarios for parameter vari-

ations might be considered: (a) each element has constant parameter variations, but

the variations are different from one finite element to another; (b) the parameter vari-

ations are constant over a certain subdomain, but are different from one subdomain

to another. In this chapter, the first scenario is considered; that is, the parameters

are different and independent for each finite element. This is the most general case

and the scenario (b) represents a special case.
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4.2.1 Interval element stiffness matrix: factorization of interval parame-
ters

For the finite elements based on assumed displacement fields, the element stiffness

matrix is given by Eq. (3.12):

k =

∫
BT CB dV

in which B is the strain-displacement matrix, and C is the elasticity matrix. For

isotropy and plane stress conditions, the elasticity matrix C is

C =
E

1− µ2




1 µ 0

µ 1 0

0 0 (1− µ)/2




, (4.4)

where µ is the Poisson’s ratio, and E is the modulus of elasticity. Assume E is

uncertain and described by an interval variable E. We may write E as

E = Ě(1 + δ) (4.5)

where Ě is the midpoint of E, and δ is the interval multiplier of E. δ is a zero-

midpoint interval, and is defined according to Eq. (2.7) as

δ =
E

Ě
− 1 = [−rad(E)/Ě, rad(E)/Ě].

Applying Eq. (4.5) to Eq. (3.12), an interval element stiffness matrix k is obtained.

It can be decomposed into two parts, the deterministic (midpoint) part ǩ and the

interval part ǩd:

k = ǩ(I + d) (4.6)

where I is an identify matrix, and d is an interval diagonal matrix. ǩ is the determin-

istic element stiffness matrix evaluated using the midpoint of E. ǩ can be obtained

using the conventional finite element formulation. The matrix d is called the interval
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multiplier matrix of the element, and it has the form

d =




δ

. . .

δ




. (4.7)

In this thesis, it is assumed that the interval parameters can be factored out from

the element stiffness matrix as in Eq. (4.6). For example, this factorization is possible

for isotropic elements with interval modulus of elasticity, plane elements with interval

thickness, truss element with interval length, beam element with interval bending

rigidity, etc. In the following discussions, it is assumed that the interval parameters

involved in the analysis are the modulus of elasticity and loads. Sec. 4.2.8 discusses

frame element with interval modulus of elasticity, interval cross-sectional area and

interval moment of inertia at the same time. In that case, the factorization of interval

parameters can only be carried out in the local coordinate system. Special treatment

will be introduced.

4.2.1.1 Example: truss element

As an example, a two-dimensional truss element with interval modulus of elasticity

is considered. This element was implemented in the thesis work to analyze the truss

structures with interval stiffness and interval loads. We use this comparatively simple

element to illustrate the factorization of interval parameters from the element stiffness

matrix.

Consider a uniform prismatic elastic truss (bar) element shown in Fig. 4.2. A node

is located at each end. The element has a length of L, cross-sectional area A and

elastic modulus E. The element has only axial displacement as degrees of freedom at

each node.

For this truss element, the element stiffness matrix in the local coordinate system is
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Figure 4.2: A truss element and its nodal d.o.f. (degrees of freedom).

k′ =




EA

L
−EA

L

−EA

L

EA

L


 . (4.8)

Assume the modulus of elasticity E is uncertain and described by an interval variable

E. Eq. (4.5) is used to rewrite E as

E = Ě(1 + δ).

Substituting Eq. (4.5) in Eq. (4.8) one has

k′ =




ĚA

L
−ĚA

L

−ĚA

L

ĚA

L










1 0

0 1


 +




δ 0

0 δ





 , (4.9)

or

k′ = ǩ′(I + d) (4.10)

For a truss element of arbitrary orientation (Fig. 4.3), it has four d.o.f. (u1, v1,

u2, v2) in the global coordinate system. A rotational coordinate transformation has

to be applied to k′ to obtain the element stiffness matrix k in the global coordinate

system:

k = T T
e k′Te (4.11)

in which Te is the element transformation matrix, and is given by

Te =




c s 0 0

0 0 c s


 , (4.12)

62



Figure 4.3: A truss element in the global coordinate system xy.

where

c = cosβ, s = sinβ.

After the application of coordinate transformation, k is the 4× 4 matrix

k =
EA

L




c2 cs −c2 −cs

cs s2 −cs −s2

−c2 −cs c2 cs

−cs −s2 cs s2




. (4.13)

Substituting Eq. (4.5) in Eq. (4.13), k can be expressed as

k = ǩ(I + d), (4.14)

where ǩ is the midpoint of k, I is the identity matrix, and d is the interval multiplier

matrix, whose diagonal entries are the interval multiplier δ associated with E.

4.2.2 Assembly of elements: Element-By-Element technique

In conventional FEA, the structure stiffness matrix K becomes populated by the ad-

dition of stiffness coefficients from elements using Eq. (3.18). This assembly process,
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if applied in interval formulation, represents a significant source of dependence. Two

stiffness constants, Kij and Kmn, may have contributions from the same element,

thus they are dependent on each other. This dependence cannot be automatically

identified by interval arithmetic. It is necessary to track the involvement of each in-

terval variable in the whole computational process. However, the tracking of interval

variables in the conventional assembly process is impractical. To overcome this diffi-

culty, an Element-By-Element (EBE) technique is used (Muhanna and Mullen, 2001)

for element assembly. The basic idea of the EBE technique is to detach the elements

so that there are no connections between elements at all, avoiding element coupling

in the element assembly procedure. The resulting disjointed structure is referred to

as the EBE model of the original structure. As a consequence of detaching elements,

a node originally shared by two elements will appear in both elements, but with dif-

ferent node numbering. In this sense, each node belongs to only one element in the

EBE model.

Figure 4.4: Two-bar structure: Element-By-Element model.

The EBE technique may be illustrated using the two-bar structure of Fig. 4.1. The

two elements are detached from each other as shown in Fig. 4.4. The node shared by

element 1 and 2 now becomes two separate nodes, namely node 2 in element 1 and

node 3 in element 2. The axial displacements at nodes are denoted by ui, i = 1, . . . , 4.

For the EBE model in Fig. 4.4, the structure stiffness matrix K is
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K =




1 0 0 0

0
E1A1

L1

0 0

0 0
E2A2

L2

−E2A2

L2

0 0 −E2A2

L2

E2A2

L2




. (4.15)

Note that the boundary condition u1 = 0 has been imposed in K. In general, the

structure stiffness matrix K produced by the EBE technique takes a block-diagonal

structure,

K =




k1

k2

. . .

kNe




(4.16)

in which each diagonal submatrix is the corresponding element stiffness matrix ki,

i = 1, . . . , Ne, and Ne is the number of elements in the structure.

It is notable that the structure stiffness matrix K given in Eq. (4.16) is singular

even after the boundary conditions have been imposed. This is due to the fact that

the elements are not connected. To recover the elements’ connections and eliminate

the singularity of K, proper constraints must be imposed, and the procedure will be

introduced in Sec. 4.2.4.

When converting a conventional FE model into its corresponding EBE model, a

shared node will appear in different elements, but with different node numbering.

Because of the multiple occurrences of the shared nodes, the total number of nodes

in the EBE model increases to Nn, Nn = number of nodes per element × Ne. Corre-

spondingly, the number of d.o.f. in the system increases to n, n = ni ×Ne where ni

is the d.o.f. per element.
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In spite of the increase of the system size, using the EBE technique has the ad-

vantage of avoiding element coupling in assembly of elements. This advantage allows

factoring out the interval variables from K. Substituting Eq. (4.6) in (4.16), the

interval structure stiffness matrix K can be written as

K =




k1

. . .

kNe




=




ǩ1

. . .

ǩNe







I +




d1

. . .

dNe







, (4.17)

or

K = Ǩ(I + D) (4.18)

in which D is called the structure interval multiplier matrix, whose submatrices are

di. Since di is interval diagonal matrix, D is also diagonal. Eq. (4.18) suggests that

the structure stiffness matrix can be decomposed into two matrices: a real matrix

and a diagonal interval matrix. The significance of this decomposition is particularly

important for tracking the interval variables in solving the structure system of interval

equations, discussed in Sec. 4.2.5.6.

Note that in the matrix D, each interval multiplier occurs ni times. For the ex-

ample of the EBE two-bar structure, each element has two d.o.f., thus

D =




d1

d2


 =




δ1

δ1

δ2

δ2




. (4.19)

The multiple occurrences of δ cause the dependence problem. Later in the formula-

tion, care will be taken to remove this dependence.
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4.2.3 Interval loads

In FEA, the structure load vector is composed of two parts:

• external concentrated loads applied directly to structure nodes (pc in Eq. (3.19)),

and

• loads applied to nodes by elements (pb in Eq. (3.19)).

Both of them could be intervals. This section discusses the calculation of the interval

loads pc and pb within the context of the EBE model, and the treatment of the

dependence problem in interval loads.

4.2.3.1 Externally applied nodal loads: pc

When converting a conventional FE model into its corresponding EBE model, a

node originally shared by two elements will appear as two different nodes in the

two elements. If there is any externally applied nodal load at the shard node, care

should be taken to apply that nodal load properly in the EBE model.

Assume an external concentrated load pi is applied at the shared node i in the

original structure. The shared node i appears in t different elements in the EBE

model, with node number i1, . . . , it, respectively. The loads applied at the nodes

i1, . . . , it due to the load pi are denoted as pi1 , . . . , pit , respectively. In the case when

pi is deterministic, pi1 , . . . , pit can be chosen arbitrarily as long as satisfying

pi =
t∑

j=1

pij . (4.20)

If pi is uncertain and varies in an interval pi, one has the interval version of Eq. (4.20):

pi =
t∑

j=1

pij . (4.21)

67



In practice, it is desirable to reduce the number of interval variables in the computa-

tion. Therefore, pi1 , . . . , pit are chosen as

pi1 = pi,

pij = 0, for j = 2, . . . , t
(4.22)

That is, the interval load pi is completely applied at one node, and the remaining

nodes have no share of pi.

Figure 4.5: EBE model of the two-bar structure (a) p1 is applied at node 2. (b) p1 is
applied at node 3.

Take the two-bar structure in Fig. 4.1 for example, the concentrated load p1 is

applied at node 2 which is the shared node of element 1 and element 2. In the EBE

model of the two-bar structure (Fig. 4.4), the shared node appears in both element

1 and element 2, numbered as node 2 and node 3, respectively. The load p1 can be

applied either at node 2 or node 3, as shown in Fig. 4.5. In the following discussion
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of this example, p1 is applied at node 2. Thus the structure load vector p is

p =




0

p1

0

p2




.

4.2.3.2 Nodal loads applied by elements: pb

The load vector pb is obtained by assembling all element generalized load vectors pe.

In conventional finite element formulation, pb is given by Eq. (3.20):

pb =
Ne∑
i=1

LT
i (pe)i.

While in the EBE model, pb has the form

pb =




(pe)1

...

(pe)Ne




(4.23)

in which (pe)i is the element load vector of the i-th element, given by Eq. (3.13). It

should be noted that dependence problem could occur in the calculation of interval

pe. Take the example of a beam element with both ends fixed, the element nodal

loads resulting from a uniformly distributed load w are shown in Fig. 4.6. Assuming

w is uncertain and represented by an interval variable w, the interval element load

vector pe is

pe =




−wL/2

−wL2/12

−wL/2

wL2/12




.
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Figure 4.6: Nodal loads for a beam element subjected to uniformly distributed load:
(a) actual loading, (b) nodal loads.

It can be seen the components of pe are related with each other through the

parameter w. The multiple occurrences of the interval variable w has to be removed

from pe to avoid the overestimation in the computations.

Mullen and Muhanna (1999) considered linear static FEA under interval load.

The dependence problem is absent in the developed algorithm and the exact ranges

of the response quantities are obtained. In that work, the structure stiffness matrix

K is deterministic and is constructed by a conventional element assembly process.

The algorithm in Mullen and Muhanna (1999) is modified here to apply within the

context of the FEA formulated using the EBE technique.

Consider the case when elements are subjected to interval surface traction. The

element load vector due to surface traction is given by

pe =

∫
NT φ(x)dx, (4.24)

where N is the shape function, φ(x) is the applied traction, and is considered to be

an interval function. Let φ(x) on i-th element be given in terms of an m-th order

polynomial

φ(x) =

j=m∑
j=0

aijx
j. (4.25)

70



The coefficients aij are intervals, and are expressed as a vector

Fi =




ai0

...

aim




. (4.26)

Define matrix wi as

wi = (Q
(0)
i , . . . , Q

(m)
i ) (4.27)

where

Q
(j)
i =

∫
NT xjdx (4.28)

for j = 0, . . . , m. Thus the element load vector (pe)i can be expressed as

(pe)i =

∫
NT φ(x)dx = wiFi . (4.29)

Substituting Eq. (4.29) in (4.23), one has

pb = WF , (4.30)

in which W is a deterministic matrix

W =




w1

w2

. . .

wNe




, (4.31)

and F is an interval vector

F =




F1

F2

...

FNe




. (4.32)
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All interval coefficients of the element surface tractions occur only once in Eq. (4.30).

Thus, the dependence problem is eliminated. This treatment is also applicable to

interval body force.

4.2.4 Constraints: penalty method and Lagrange multipliers

Because of the fact that the elements are detached in the EBE model, the continuity

of the structure is lost, resulting in a singular stiffness matrix K in Eq. (4.16). Also,

the EBE model does not automatically satisfy the compatibility of displacements at

nodes; i.e., a node shared by two elements should have the same displacements when

considered as part of either element. Constraints have to be imposed to recover the

connections between elements, and to ensure the compatibility of displacements. Two

general techniques, namely penalty method and Lagrange multipliers, are used in this

thesis to impose constraints.

4.2.4.1 Penalty functions

In steady-state analysis, the variational formulation of a discrete structure model is

given in the following form (Gallagher, 1975; Bathe, 1996; Cook et al., 2002)

Π =
1

2
uT Ku− uT p (4.33)

with the conditions

∂Π

∂ui

= 0 for all i (4.34)

where Π is the total potential energy. Assume that we want to impose the constraint

conditions

cu− q = 0 (4.35)

where c and q contain constants. Define

t = cu− q, (4.36)
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so that the constraints are satisfied if t = 0. The potential energy function Π is

augmented by a penalty function
1

2
tT ηtT , where η is a diagonal matrix of “penalty

numbers” ηi. Therefore

Π∗ =
1

2
uT Ku− uT p +

1

2
tT ηt. (4.37)

Invoking the stationarity of Π∗, that is δΠ∗ = 0, results in

(K + cT ηc)u = p + cT ηq (4.38)

or

(K + Q)u = p + cT ηq, (4.39)

in which Q = cT ηc. Considering the constraint conditions in the EBE model takes

the form cu = 0 and q = 0, Eq. (4.39) reduces to

(K + Q)u = p (4.40)

Q is called a penalty matrix. As η grows, u changes in such a way that the constraint

equations are more nearly satisfied (Cook et al., 2002). For the interval FEA, the

structure stiffness matrix and the load vector are interval quantities, leading to the

interval version of Eq. (4.40)

(K + Q)u = p. (4.41)

Eq. (4.41) defines the structural equation for the interval FEA formulated using

the EBE technique and the penalty method. Note that the displacement vector u in

the EBE model has the structure

u = ((ue)1, . . . , (ue)Ne)
T , (4.42)

in which (ue)i denotes the nodal displacement vector of i-th element.

The penalty method can be demonstrated using the example of the EBE two-bar

structure of Fig. 4.4. Node 2 and node 3 are shared nodes of element 1 and element 2,
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thus their displacements should be same in the EBE model. The constraint condition

u2 = u3 implies

c = (0 1 − 1 0),

and

Q = cT ηc =




0 0 0 0

0 η −η 0

0 −η η 0

0 0 0 0




.

The structural equation (4.40) becomes







1 0 0 0

0
E1A1

L1

0 0

0 0
E2A2

L2

−E2A2

L2

0 0 −E2A2

L2

E2A2

L2




+




0 0 0 0

0 η −η 0

0 −η η 0

0 0 0 0







·




u1

u2

u3

u4




=




0

p1

0

p2




The physical interpretation of the penalty method is that a spring of large stiffness of

η is added to the structure to connect node 2 and node 3, as demonstrated in Fig. 4.7.

As η grows, node 2 and node 3 are forced to have the same displacement. Also note

that because of the large stiffness of the spring, applying the load p1 at node 3 will

have the same effect as applied at node 2.

Figure 4.7: Two-bar structure: Element-By-Element model with penalty method.
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The advantage of the penalty method is its ease of use. Adding penalty numbers to

the structure stiffness matrix is simple and requires no additional equations. However,

using the penalty method requires a careful choice of the penalty number. The

penalty number should be sufficiently large to fulfill the constraints correctly. On the

other hand, as the penalty number increases, the system equation becomes stiff and

susceptible to ill-conditioning. There may be substantial error due to ill-conditioning.

Therefore, the penalty number should not be so large as to provoke numerical error.

A guideline for choice of the penalty number η is given by Cook et al. (2002):

“If computer words represent approximately d decimal digits, experience

has shown that η should not exceed 10d/2 if numerical trouble associated

with ill-conditioning is to be avoided. Typically 10d/2 is 103 or 104 in

single precision and 106 or 107 in double precision.”

4.2.4.2 Lagrange multipliers

In the Lagrange multiplier method, the left-hand side of the constraint condition

cu − q = 0 is premultiplied by a row vector λT , and added to the right-hand side of

potential energy (4.33) to obtain

Π∗∗ =
1

2
uT Ku− uT p + λT (cu− q). (4.43)

λ is called the Lagrange multiplier vector for the constraint equation (4.35) (Bathe,

1996; Cook et al., 2002). λ contains as many Lagrange multipliers λi as there

are constraint equations. Invoking the stationarity of Π∗∗, i.e., ∂Π∗∗/∂u = 0 and

∂Π∗∗/∂λ = 0, one has




K cT

c 0







u

λ


 =




p

q


 . (4.44)

For the EBE model, q = 0 and Eq. (4.44) reduces to
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


K cT

c 0







u

λ


 =




p

0


 . (4.45)

In the interval FEA, K, u, λ and p become interval quantities, and Eq. (4.45) becomes

interval equation




K cT

c 0







u

λ


 =




p

0


 . (4.46)

Eq. (4.46) defines the structural equation for the interval FEA formulated using the

EBE technique and Lagrange multipliers.

For the example of the EBE two-bar structure of Fig. 4.4, application of the La-

grange multipliers leads to the structural equation




1 0 0 0 0

0
E1A1

L1

0 0 1

0 0
E2A2

L2

−E2A2

L2

−1

0 0 −E2A2

L2

E2A2

L2

0

0 1 −1 0 0




·




u1

u2

u3

u4

λ




=




0

p1

0

p2

0




.

In the Lagrange multiplier method, λ is introduced as a new set of unknowns in

Eq. (4.45). The number of constraints to be imposed in the EBE model is usually very

large. Therefore, using Lagrange multipliers will lead to a much larger system than

the original system. This makes the Lagrange multiplier method computationally less

efficient than the penalty method. For this reason, the penalty method is preferable

for the implementation of the present interval FEA.
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4.2.5 Solving the linear interval equation

So far we have considered the derivation of the equilibrium equations of an inter-

val finite element system. This included the assemblage of the elements based on

the Element-By-Element technique and the imposition of constraints by the penalty

method or the Lagrange multipliers. Using the penalty method, the system equilib-

rium equation is obtained as

(K + Q) = p. (4.47)

In the case of the Lagrange multipliers being used, the system equation has the form




K cT

c 0







u

λ


 =




p

0


 . (4.48)

Eqs. (4.47) and (4.48) are linear interval equations, and can be represented in a general

form

Ax = b. (4.49)

As mentioned in Sec. 2.6, the solution of interest for a linear interval equation is

to find a sharp enclosure of its solution set. The overall effectiveness of an interval

FEA depends to a large degree on the numerical procedures used for the solution of

the interval system equations. The commonly used methods for the solution of linear

interval equations include interval Gauss elimination, interval Gauss-Seidel iteration,

and fixed point iteration. These methods are presented in the following sections.

4.2.5.1 Preconditioning

To solve a linear interval equation, it is often desirable to transform the original system

into a new system with a more tractable coefficient matrix. For the original system

Ax = b, we multiply A and b by a preconditioning matrix R ∈ Rn×n, obtaining a
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new system:

RAx = Rb. (4.50)

This is referred to as preconditioning. For the preconditioned system, the following

theorem can be presented:

Theorem 4.1 (Neumaier, 1990) Let A ∈ IRn×n and R ∈ Rn×n. If RA is regular

then A is regular and

AHb ⊆ (RA)H(Rb). (4.51)

Theorem 4.1 states that the hull of the original system is contained in the hull of

the preconditioned system. The preconditioning matrix R is usually chosen as Ǎ−1,

leading to the new system

Ǎ−1Ax = Ǎ−1b. (4.52)

If the interval coefficients of A are not wide, then Ǎ−1A is close to the identity matrix

and hence regular. In this case, Eq. (4.52) can be solved with much less overestimation

due to the dependence problem than the original system (Neumaier, 1990; Hansen

and Walster, 2003).

To use the preconditioning matrix, a considerable amount of work has to be done

for computing the midpoint inverse Ǎ−1. Unfortunately, in many cases this step is

necessary to obtain sharp results (Neumaier, 1990; Hansen and Walster, 2003).

4.2.5.2 Interval Gauss elimination

This algorithm is an interval version of the classic Gauss elimination algorithm known

from standard numerical analysis (e.g., Neumaier, 2001; Guan and Lu, 1998). Let

us start with a quick review of the class Gauss elimination to motivate its interval

version. Starting with the system:
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


A11 A12 . . . A1n

A21 A22 . . . A1n

...
...

...

An1 An2 . . . Ann



·




x1

x2

...

xn




=




b1

b2

...

bn




, (4.53)

we subtract a suitable multiple of the first row from the other rows such that the

subdiagonal entries of the first column becomes zero. If A11 6= 0, the multiplication

factor for the i-th row is Li1 = Ai1/A11, with i > 1. After subtraction, the system is

reduced to




A11 A12 . . . A1n

0 A
(1)
22 . . . A

(1)
1n

...
...

...

0 A
(1)
n2 . . . A

(1)
nn



·




x1

x2

...

xn




=




b1

b
(1)
2

...

b
(1)
n




, (4.54)

in which

A
(1)
ik = Aik − Li1A1K = Aik − Ai1A

−1
11 A1k (4.55)

b
(1)
i = bi − Li1b1 = bi − Ai1A

−1
11 b1 (4.56)

for i, k = 2, . . . , n. After the vector x(1) = (x2, . . . , xn)T are determined from the

smaller system A(1)x(1) = b(1), the first variable x1 is obtained as

x1 = (b1 −
∑

k>1

A1kxk)/A11. (4.57)

As long as the corresponding diagonal elements A
(j−1)
jj remain nonzero, further vari-

ables can be eliminated in the same way by





Lij = A
(j−1)
ij /A

(j−1)
jj ,

A
(j)
ik = A

(j−1)
ik − LijA

j−1
jK , (i, k > j),

b
(j)
i = b

(j−1)
i − Lijb

(j−1)
j .

(4.58)
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The variable xj can then be obtained from xj+1, . . . , xn by

xj = (b
(j−1)
j −

∑

k>j

A
(j−1)
jk xk)/A

(j−1)
jj , for j = 1, 2, . . . , n. (4.59)

In Eqs. (4.58) and (4.59), A(0) = A and b(0) = b.

The multiplication factors Lij (i > j) and the coefficients Ujk = A
(j−1)
jk (j ≤ k) in

the above formulas can be combined into two triangular matrices

L =




1 0 . . . 0 0

L21 1 . . . 0 0

L31 L32
. . .

...
...

...
... 1 0

Ln1 Ln2 . . . Lnn−1 1




, U =




U11 U12 . . . U1n

0 U22 . . . U2n

0 0
. . .

...
...

. . .
...

0 0 . . . 0 Unn




, (4.60)

such that A = LU . The coefficients of L and U are calculated from

Lik = (Aik −
∑

j>k

LijUjk)/Ukk for i > k, (4.61)

Uik = Aik −
∑
j<i

LijUjk for i ≤ k. (4.62)

Thus, Gauss elimination effectively consists in a decomposition of A into the product

of two triangular matrices L and U . The solution of Ax = b is reduced to two

triangular systems Ly = b and Ux = y, which can be easily solved by forward

substitution and backward substitution as follows:

yi = bi −
∑
j<i

Lijyj for i = 1, . . . , n, (4.63)

xi = (yi −
∑

k>i

Uikxk)/Uii for i = n, n− 1, . . . , 1. (4.64)

For interval case when A ∈ IRn×n and b ∈ IRn, Eqs. (4.60) to (4.64) remain valid,

provided that the intervals A
(j−1)
jj = Ujj does not contain zero. However, due to the
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properties of interval arithmetic (see Sec. 2.4 and 2.5), in general, the product of

triangular interval matrices L and U does not equal to A. Instead, only the weaker

relations are valid:

A ⊆ LU , Ly ⊇ b, Ux ⊇ y. (4.65)

Hence, the resulting interval vector x is an enclosure of the solution set, i.e., Σ(A, b) ⊆
x.

Interval Gauss elimination can obtain realistic bounds for certain classes of ma-

trices, such as tridiagonal matrices and M -matrices (Neumaier, 1990). For a general

equation Ax = b, the interval Gauss elimination should be combined with the pre-

conditioning technique to yield useful results (Neumaier, 1990; Hansen and Walster,

2003). This leads to the preconditioned interval Gauss elimination. The precondi-

tioned interval Gauss elimination can be formulated as follows:

Step 1: Compute the midpoint inverse Ǎ−1.

Step 2: Precondition the system with Ǎ−1, i.e., calculate A′ = Ǎ−1A, b′ = Ǎ−1b.

Step 3: Perform the LU decomposition for A′ according to Eqs. (4.61) and (4.62).

Step 4: Solve Ly = b′ for y by forward substitution.

Step 5: Solve Ux = y for x by backward substitution.

In interval Gauss elimination, it is required all Uii do not contain zero. In practice,

column pivoting can be used to avoid division by zero. Among A
(j−1)
jj , . . . , A

(j−1)
nj , the

one with the largest mignitude is chosen as the pivot element. Recall the mignitude

of an interval x is defined as

mig(x) =





min{|x|, |x|}, if 0 /∈ x

0 otherwise.
(4.66)
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However, even with pivoting, it is still possible to have a Uii containing zero, causing

the algorithm to break down. For example (Hargreaves, 2002), if the coefficient ma-

trix is

A =




[0.95, 1.05] [1.95, 2.05] [2.95, 3.05]

[1.95, 2.05] [3.95, 4.05] [6.95, 7.05]

[1.95, 2.05] [−0.05, 0.05] [0.95, 1.05]




,

then the upper triangular matrix U using column pivoting is given by

U =




[1.95, 2.05] [3.95, 4.05] [6.95, 7.05]

[0, 0] [−4.31,−3.71] [−6.46,−5.56]

[0, 0] [0, 0] [−1.23, 0.23]




.

U33 contains zero so that the back-substitution cannot be continued due to division

by zero.

4.2.5.3 Interval Gauss-Seidel iteration

If an initial enclosure x of AHb is already known, a better enclosure may be obtained

by interval Gauss-Seidel iteration. Consider a deterministic equation Ax = b, A ∈ A

and b ∈ b, the equation is written explicitly in components as

n∑

k=1

Aikxk = bi, for i = 1, . . . , n. (4.67)

Assuming that Aii 6= 0, the i-th variable can be solved from the i-th equation as

xi = (bi −
∑

k 6=i

Aikxk)/Aii. (4.68)

Therefore, if an initial enclosure x is known and 0 /∈ Aii,

xi ∈ x′i = (bi −
∑

k 6=i

Aikxk)/Aii. (4.69)
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Since Eq. (4.69) holds for all x with Ax = b, A ∈ A and b ∈ b, x′ is an enclosure of

the solution set for Ax = b. Moreover,

Σ(A, b) ⊆ x′ ∩ x, (4.70)

thus a new enclosure which is at least as good as the initial one is obtained. The

method can be improved by using the already obtained new enclosures for x1, . . . , xn−1

to compute xn. This leads to the interval Gauss-Seidel iteration:

x
(l+1)
i = (bi −

∑

k<i

Aikx
(l+1)
k −

∑

k>i

Aikx
(l)
k )/Aii ∩ x

(l)
i , for l = 1, 2, . . . (4.71)

The iterations can be terminated if the radii of the components of x(i) are no longer

rapidly decreasing (Hargreaves, 2002). The sum of these radii can be calculated after

each iteration and compared with the previous sum.

Interval Gauss-Seidel iteration does not work all the time for general A ∈ IRn×n.

It may happen that some initial enclosure x is not improved at all by the interval

Gauss-Seidel iteration (Neumaier, 1990).

4.2.5.4 Fixed point iteration

Fixed point iteration is one of the most used methods for the solution of linear interval

equations. This method has been discussed in the works of Gay (1982), Neumaier

(1987), Neumaier (1990), Jansson (1991), Rump (1983), Rump (1992) and Rump

(2001).

One typical approach to find the solution of a linear system Ax = b is to transform

it into a fixed point equation g(x) = x, in which

g(x) = x−R(Ax− b) = Rb + (I −RA)x, (4.72)

where R is a nonsingular matrix. It can be seen R serves as a preconditioning matrix.

Eq. (4.72) is the Krawczyk operator (Neumaier and Shen, 1990). From Brouwer’s

fixed point theorem (Brouwer, 1912), it follows that for some interval vector x ∈ IRn

Rb + (I −RA)x ∈ x ∀x ∈ x (4.73)
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implies

∃x ∈ x : Ax = b. (4.74)

To apply this theorem, one has to verify that the range Rb+(I−RA)x for each x ∈ x

indeed belongs to x. This is a range determination problem and can be handled by

using interval arithmetic. If an interval vector x can be found satisfying the following

condition:

Rb + (I −RA)x ⊆ x, (4.75)

then x contains the solution of Ax = b. The result can be extended to find the

enclosure of the solution set of linear interval equation Ax = b. The following

theorem can be presented.

Theorem 4.2 (Rump, 1990) Let A ∈ IRn×n, R ∈ Rn×n, b,x ∈ IRn be given, if

Rb + (I −RA)x ⊆ int(x), (4.76)

then R and every matrix A ∈ A is nonsingular, and

Σ(A, b) = {x ∈ Rn | ∃A ∈ A, ∃b ∈ b : Ax = b} ⊆ x, (4.77)

where int(x) denotes the interior of x. Theorem 4.2 can be presented in a residual

form (Neumaier, 1990): if x∗ ∈ IRn satisfies

Rb−RAx0 + (I −RA)x∗ ⊆ int(x∗), (4.78)

then

Σ(A, b) ⊆ x∗ + x0, (4.79)

where x0 is a deterministic vector.

Theorem 4.2 provides an outer estimation of the hull of the solution set. An

inner estimation of the hull of the solution set can be obtained based on the following

theorem.
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Theorem 4.3 (Rump, 1990) Let A ∈ IRn×n, R ∈ Rn×n, b ∈ IRn, x0 ∈ Rn be

given, assume R is nonsingular and A is regular. Define

q = x0 + Rb−RAx0,

∆ = (I −RA) (Σ(A, b)− x0) . (4.80)

Then

inf (Σ(A, b)) ≤ inf(q) + sup(∆), (4.81)

sup (Σ(A, b)) ≥ sup(q) + inf(∆). (4.82)

Since ∆ involves Σ(A, b), the right hand sides of Eqs. (4.81) and (4.82) cannot be

calculated directly to form an inner estimation. Using an outer estimation x of

Σ(A, b), e.g., some outer estimation computed by using Theorem 4.2, and defining

∆∗ = (I −RA) (x− x0) , (4.83)

one has

∆ = (I −RA) (Σ(A, b)− x0) ⊆ ∆∗, (4.84)

which implies

inf (Σ(A, b)) ≤ inf(q) + sup(∆∗), (4.85)

sup (Σ(A, b)) ≥ sup(q) + inf(∆∗). (4.86)

Hence, an inner estimation can be obtained with ∆ replaced by ∆∗ in Eqs. (4.81) and

(4.82):

[inf(q) + sup(∆∗), sup(q) + inf(∆∗)] ⊆ AHb (4.87)

Based on Theorem 4.2 and Theorem 4.3, fixed point iteration can be constructed

to obtain outer and inner estimations of the hull of the solution set for a linear interval

equation Ax = b. The procedure is summarized in the following algorithm (Rump,

1992).
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Step 1: Calculate the midpoint solution x0, i.e., use the midpoint Ǎ and b̌ of A and

b, solve Ǎx0 = b̌.

Step 2: Calculate the inverse of the midpoint of A. Assign R = (mid(A))−1 = Ǎ−1,

z = Rb−RAx0, G = I −RA. Initialize x∗ = 0, l = 0.

Step 3: Calculate

x∗(l+1) = z + G(εx∗(l)). (4.88)

G is the iterative matrix, and z the residual term.

Step 4: If x∗(l+1) ⊆ int(x∗(l)) or l > maximum number of iterations allowed: stop.

Otherwise, update l = l + 1, repeat Step 3.

Step 5: If x∗(l+1) ⊆ int(x∗(l)), then

• AHb ⊆ x0 + x∗(l+1) = x.

• By defining y = [inf(z) + sup(Gx∗(l+1)), sup(z) + inf(Gx∗(l+1))], an inner

bound is obtained as x0 + y ⊆ AHb.

else: no bounds can be computed.

Rohn and Rex (1998) have shown that the algorithm converges if and only if ρ(|G|) <

1, where ρ(|G|) is the spectral radius of the absolute value of G. The convergence

will be discussed in more detail in Sec. 4.2.5.7. The ε used in the above algorithm is

an interval number, serving as an “inflation parameter” to enforce finite termination

of the algorithm. ε has a form of [1 − β, 1 + β], β ∈ [0, 1]. Using a small β usually

yields a sharper result, but requires more iterations. In general, β is chosen between

0.1 and 0.001.

4.2.5.5 Parametric linear interval equations

It must be noted that the interval Gauss elimination, interval Gauss-Seidel iteration,

and fixed point iteration discussed previously do not consider the dependence between
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the interval coefficients of the system matrix. In these methods, the interval coeffi-

cients in the system matrix are assumed to vary independently between their bounds.

This assumption is no longer valid for the interval structural equations that arise in

the interval FEA. The structural equations of an interval finite element system are

a system of parametric linear interval equations. The term “parametric” emphasizes

the fact that the interval coefficients in the equation are functions of some physical

parameters (e.g., modulus of elasticity), which are uncertain and take interval values.

Therefore, Eq. (4.49) is in fact of the form

A(α)x = b(α), with α = (α1, . . . , αm)T , (4.89)

where αi, i = 1, . . . , m, are system parameters varying over certain intervals. For

every α ∈ α, there is a corresponding real matrix A(α) and a real vector b(α). All

the solutions of the deterministic equations A(α)x = b(α) for all α ∈ α form the

solution set of the parametric interval equation, denoted as

Σ(A(α), b(α)) = {x ∈ Rn | ∃α ∈ α : A(α)x = b(α)}. (4.90)

The solution set is connected and bounded if the interval matrix A(α) is regular; i.e.,

A(α) is nonsingular for all α ∈ α. This regularity condition is satisfied for the struc-

tural equations of the interval FEA. The solution set Σ(A(α), b(α)) is usually not

an interval vector, and can be of quite complicated shape. The narrowest (tightest)

interval vector enclosing Σ(A(α), b(α)) is referred to as the hull of the solution set,

denoted as

A(α)Hb(α) = ♦Σ(A(α), b(α)). (4.91)

For each α ∈ α, there is a corresponding A(α) and b(α), and the associated solution

is x = A(α)−1b(α). Hence, A(α)Hb(α) can be expressed as

A(α)Hb(α) = ♦{A(α)−1b(α)| α ∈ α}. (4.92)
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Computing the solution set or the hull of the solution set is difficult in a general

case of parametric linear interval equations. For many practical purposes, it is of

interest to seek an outer estimation (enclosure), i.e., an interval vector x enclosing the

solution set Σ(A(α), b(α)), while still sharp enough to be practically useful. Within

the context of the interval FEA, the enclosure of the system equation represents an

outer bound of the ranges of the nodal displacements.

For the solution of parametric linear interval equations, it is essential to handle

the dependence problem. At present, however, no methods have been devised for the

general case of parametric linear interval equations. A number of algorithms, based

on the standard fixed point iteration discussed in Sec. 4.2.5.4, have been proposed for

certain types of parametric linear interval equations.

Jansson (1991) proposed an algorithm for computing sharp bounds for the solution

sets of linear systems with symmetric matrices with interval coefficients. Using the

same symbols as in Sec. 4.2.5.4, the residual term z in Eq. (4.88) is rewritten as

zi =
n∑

µ=1

Riµ(bµ −Aµµx0µ)−
n∑

µ,ν=1
µ<ν

(Riµx0ν + Riνx0µ)Aµν , (4.93)

thus only the upper triangular part of A appear in the formulation. The parametric

interval equation developed in interval FEA, however, involves more dependencies

than in a symmetric interval equation. Hence, applying this algorithm to the interval

FEA leads to results of the same nature of the näıve interval FEA.

Rump (1994) generalized the method for any linear dependence of the system

coefficients on interval parameters. The dependence was partially accounted for in

this method. Consider the parametric linear interval equation A(α)x = b(α), where

A(α) ∈ IRn×n and b(α) ∈ IRn depend on an interval parameter vector α ∈ IRm.

Each components A(α)ij and b(α)j depends linearly on α means that there are

vectors w(i, j) ∈ Rm for 0 ≤ i ≤ n, 1 ≤ j ≤ n with

A(α)ij = w(i, j)T α, b(α)j = w(0, j)T α. (4.94)
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Using Eq. (4.94), the residual term z in Eq. (4.88) is rewritten as

zi = (
n∑

j, v=1

Rij · (w(0, j)− x0v) · w(j, v))T ·α (4.95)

This method accounts for the dependence in the residual term z by factoring out

the interval parameter vector α. However, the dependence in the iterative matrix G

is not considered. This method was used in Popova et al. (2003) for static analysis

of linear elastic composite material with interval modulus of elasticity. The example

shows that this method gives sharp enclosure for narrow interval parameters, but the

accuracy deteriorates with increase of the parameter uncertainties and the number

of interval parameters. Moreover, Eq. (4.94) requires the explicit expressions of the

dependence relations of the matrix coefficients on each interval parameter, which

makes this method difficult to implement in FE formulation.

Dessombz et al. (2001) introduced a modified fixed point iteration for solving the

parametric linear interval equations Ku = p in the interval FEA. The stiffness matrix

K and the load vector p are expressed as:

K = K0 +
m∑

i=1

αiKi, (4.96)

p = p0 +
m∑

i=1

αipi, (4.97)

in which α1, . . . , αm are the interval parameters, and all other quantities are deter-

ministic. Applying Eqs. (4.96) and (4.97) to the fixed point iteration, the residual

term z is obtained as

z = Rp−RKx0 = R(p0 −K0x0) +
m∑

i=1

αi(R(pi −Kix0)), (4.98)

and the iterative matrix G is

G = I −RK = I −RK0 −
m∑

i=1

αi(RKi). (4.99)

This algorithm has been tested on simple mechanical systems, and leads to a conser-

vative envelope of the transfer functions of the dynamic problems. The same method
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was also presented in the work of Popova (2004). In this method, the dependence

control becomes less effective with an increase of the number of interval parameters,

therefore this algorithm can only handle a limited number of interval parameters.

4.2.5.6 Present algorithm

To incorporate the equation solver with dependence control, it is critical to exploit

the special structures of the system equilibrium equations obtained using the EBE

technique. In this thesis, the interval Gauss elimination and interval Gauss-Seidel

iteration have been tested, but they failed to produce a sharp result. Dependence

control is very difficult to implement in the interval Gauss elimination, and the over-

estimation accumulated in the elimination process is often significant. The interval

Gauss-Seidel iteration requires an initial enclosure to start with, and it does not

always yield an improved solution.

The equation-solver developed in this thesis is based on the standard fixed point

iteration introduced in Sec. 4.2.5.4. Recall that the structural equations of an interval

finite element system formulated using the EBE technique and the penalty method

is

(K + Q)u = p (4.100)

or

Au = p (4.101)

in which K ∈ IRn×n, p ∈ IRn, Q ∈ Rn×n, and A = K + Q. Define R as the inverse

of the midpoint of A,

R = (mid(A))−1 = Ǎ−1 = (Ǩ + Q)−1, (4.102)

and u0 the midpoint solution of Eq. (4.101),

u0 = Ǎ−1p̌ = Rp̌. (4.103)
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Applying the fixed point iteration to Eq. (4.101) yields

u∗(l+1) = z + G(εu∗(l))

= (Rp−RAu0) + (I −RA)(εu∗(l)). (4.104)

Due to the coefficient-dependence, evaluating Eq. (4.104) directly overestimates the

results. To track the involvement of interval parameters in the computations, Eq. (4.18)

is used to express K as

K = Ǩ(I + D) = Ǩ + ǨD.

Combining Eqs. (4.18) and (4.104) yields

u∗(l+1) = (Rp−R(Ǩ + Q + ǨD)u0) + (I −R(Ǩ + Q + ǨD))(εu∗(l))

= Rp− u0 −RǨDu0 −RǨD(εu∗(l))

= Rp− u0 −RǨD(u0 + εu∗(l))

= Rp− u0 −RǨM (l)∆. (4.105)

As discussed in Sec. 4.2.3, the interval load vector p is obtained as

p = pc + pb = pc + WF , (4.106)

in which W and F are respectively calculated according to Eqs (4.31) and (4.32).

Substitution of Eq. (4.106) into Eq. (4.105) yields

u∗(l+1) = Rpc + (RW )F − u0 −RǨM (l)∆. (4.107)

In the above expression the parentheses ( ) in (RW )F emphasize that the noninterval

operation RW should be carried out first, followed by the multiplication of the interval

vector F . In the following discussions, the expression Rp will be used for simplicity.

In practice, however, Rp should be calculated as Rpc + (RW )F .

For the case of deterministic loads, one has p = p̌, and Eq. (4.105) reduces to a

even simpler form

u∗(l+1) = −RǨM (l)∆. (4.108)
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The iterations are terminated if

u∗(l+1) ⊆ int(u∗(l)), (4.109)

and one has the solution

u = u0 + u∗(l+1) = Rp−RǨM (l)∆. (4.110)

Note that in Eqs. (4.105) and (4.108), RǨD(u0+εu∗) is transformed to RǨM∆.

This symbolic manipulation eliminates the dependence problem in RǨD(u0 + εu∗).

M is an interval matrix with dimension of n × Ne. M contains the components of

u0 + εu∗(l), and is updated with u∗ in each iteration. ∆ is an interval vector with

dimension of Ne. It contains the diagonal entries of D, but every interval multiplier

occurs only once. In general, when D is multiplied by an interval vector u, the mul-

tiplication can be reformulated as M∆, in which M is obtained as

M =




(ue)1

(ue)2

. . .

(ue)Ne




(4.111)

where (ue)i is the displacement vector of i-th element. This technique can be illus-

trated using the example of the EBE two-bar structure of Fig. 4.4. For this particular

example,

D =




δ1 0 0 0

0 δ1 0 0

0 0 δ2 0

0 0 0 δ2




, M =




u1 0

u2 0

0 u3

0 u4




, ∆ =




δ1

δ2


 .

Thus
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


δ1 0 0 0

0 δ1 0 0

0 0 δ2 0

0 0 0 δ2







u1

u2

u3

u4




=




u1 0

u2 0

0 u3

0 u4







δ1

δ2


 . (4.112)

The interval quantities δ1 and δ2 each occur twice on the left-hand side of Eq. (4.112).

This dependence will cause widening of the computed result. By rewriting Du as

M∆, δ1 and δ2 only occur once and the dependence is absent.

The equation solving procedure is summarized in the following algorithm:

Step 1: Calculate the midpoint solution Ǎu0 = p̌.

Step 2: Calculate the inverse of the midpoint of A. and assign R = (mid(A))−1 =

Ǎ−1. Initialize u∗ = 0, l = 0.

Step 3: Calculate M (l) according to Eq. (4.111), and u∗(l+1) = Rp−u0−RǨM (l)∆.

Step 4: If u∗(l+1) ⊆ int(u∗(l)) or l > maximum number of iterations allowed: stop.

Otherwise, update l = l + 1, repeat Step 3.

Step 5: If u∗(l+1) ⊆ int(u∗(l)), then

• AHp ⊆ u0 + u∗(l+1) = Rp−RǨM (l)∆ = u.

• By defining y = [inf(z) + sup(Gu∗(l+1)), sup(z) + inf(Gu∗(l+1))], an inner

bound is obtained as u0 + y ⊆ AHp.

else: no bounds can be computed.

The developed equation-solver has controlled the occurrences of the dependent in-

terval quantities inside the iteration, thus avoiding the drastic overestimation in the

näıve interval FEA.
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4.2.5.7 Convergence of the fixed point iteration

For the fixed point iteration, Rohn and Rex (1998) have shown that the algorithm

converges if and only if

ρ(|G|) < 1, (4.113)

where ρ(|G|) is the spectral radius of the absolute value of G. For this reason,

the choice R = Ǎ−1 is made so that G = I − RA has a small spectral radius,

and the condition Eq. (4.113) is more likely to be satisfied. In general, the spectral

radius of G is influenced by two factors: (a) the width of the interval parameters,

and (b) the overestimation in G due to dependence problem. The first factor is

determined by the physics of the problem. The formulation should minimize the effect

of the second factor. If not handled properly, the dependence problem may result in

significant overestimation in the value of G, even for narrow interval parameters. As

a consequence of the overestimation, Eq. (4.113) may not hold, and no enclosure can

be found. It is of vital importance to keep the overestimation in G as minimum as

possible. In general, the smaller the spectral radius of |G|, the faster the convergence

of the algorithm, and the smaller the overestimation of the solution. In the proposed

iteration of Eq. (4.105), the iterative matrix G takes the form:

G = I −RA

= I −R(Ǩ + Q + ǨD)

= −RǨD. (4.114)

Hence, all noninterval values are multiplied first and the last multiplication involves

the interval quantities. This treatment drastically reduces the overestimation in G,

and ensures the algorithm will converge for even relatively wide interval parameters.
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4.2.6 Stresses and element nodal forces calculation

Once the nodal displacement u is calculated, stresses in each element can be calculated

according to Eq. (3.6). If there are no initial stresses or initial strains, the stresses

are obtained from

σ = Cε, with ε = Bue.

where B is the strain-displacement matrix. Thus,

σ = CBue. (4.115)

In deterministic FEA, Eq. (4.115) is evaluated by extracting ue from u and mul-

tiplying by EB. In the interval FEA, ue and C are interval quantities. Following

the same computation practice will bring in significant overestimation, making the

bounds of the stresses unnecessarily wide. The reason behind this is that the compo-

nents of ue are related with each other through the interval parameters. It is desirable

to avoid the direct involvement of ue in the computations. Recall that the two crit-

ical issues in interval computations are: (a) reduce multiple occurrences of the same

interval variables, and (b) make the use of interval arithmetic as late as possible in

the process.

Suppose the interval nodal displacement u has been calculated after l iterations.

According to Eq. (4.110),

u = u0 + u∗(l+1) = Rp−RǨM (l)∆,

and the element nodal displacement ue can be extracted from u by

ue = Lu = LRp− LRǨM (l)∆, (4.116)

in which L is the element Boolean connectivity matrix. The interval element elasticity

matrix C can be expressed as

C = (1 + δ)Č, (4.117)
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in which δ is the interval multiplier of the element’s interval modulus of elasticity.

Substituting Eqs. (4.116) and (4.117) in Eq. (4.115), the interval stress is obtained as

σ = CBue

= C(BLRp−BLRǨM (l)∆)

= (1 + δ)(ČBLRp− ČBLRǨM (l)∆). (4.118)

Eq. (4.118) has minimized the occurrences of the interval quantities, and most sources

of the overestimation are eliminated. When evaluating Eq. (4.118), all real operations

have to be performed first, followed by the interval computations. If this order is not

maintained, the results will not be sharp.

For truss, beam and frame elements, the interest often lies in calculating element

internal forces. Take a frame element, for example, in which the axial force, shear

force, and moment at the ends of the element can be determined by

f = Te(kue − pe), (4.119)

where Te is the coordinate transformation matrix, ue is element nodal displacements

and −pe represents the fixed-end reactions. In the present interval FEA, Eq. (4.119)

must be calculated with consideration of the dependence problem, as in the stresses

calculation. Since the system is assembled using the Element-By-Element technique,

Ku yields

Ku =




k1(ue)1

...

kNe(ue)Ne




, (4.120)

and

96



pb =




(pe)1

...

(pe)Ne




. (4.121)

Combining Eqs (4.120) and (4.121), one finds that

Ku− pb =




k1(ue)1 − (pe)1

...

kNe(ue)Ne − (pe)Ne




. (4.122)

Defining matrix T as

T =




(Te)1

. . .

(Te)Ne




, (4.123)

and using Eqs (4.122) and (4.123), one obtains

T (Ku− pb) =




(Te)1(k1(ue)1 − (pe)1)

...

(Te)Ne(kNe(ue)Ne − (pe)Ne)




. (4.124)

Comparing above with Eq. (4.119), it can be seen T (Ku − pb) gives the element

internal forces at nodes for all elements. However, it is not advisable to compute

Eq. (4.124) directly since K and u are dependent. From the structural equation

(K + Q)u = pc + pb we have

T (Ku− pb) = T (pc −Qu). (4.125)

The right-hand side of Eq. (4.125) will be calculated to obtain T (Ku − pb). The
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displacement u is given by Eq. (4.110) as

u = R(pc + pb)−RǨM (l)∆.

Substitution of the expression of u in the right-hand side of Eq. (4.125) yields

T (pc −Qu) = T (pc −Q(R(pc + pb)−RǨM (l)∆))

= T (I −QR)pc − TQRpb + TQRǨM (l)∆. (4.126)

In Eq. (4.126) the dependence of the interval quantities has been minimized and most

sources of the overestimation are eliminated. The sharp bounds for element internal

forces at nodes for all elements can be obtained.

4.2.7 Formulation using the Lagrange multipliers

The above discussions are based on the interval FEA formulated using the EBE

technique and the penalty method. If the Lagrange multiplier method is used instead

of the penalty method, the structural equation can be solved by using a similar

procedure by the fixed point iteration. The procedure to be followed later to obtain

the element stresses or element nodal forces also remains similar to the penalty method

case.

Using the EBE technique and Lagrange multipliers one obtains the structural

equation




K cT

c 0







u

λ


 =




p

0


 . (4.127)

Eq. (4.127) needs to be solved with dependence control in mind. Using Eq. (4.18),

Eq. (4.127) is written as







Ǩ cT

c 0


 +




ǨD 0

0 0










u

λ


 =




p

0


 (4.128)
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or

Ax = b,

where

A =







Ǩ cT

c 0


 +




ǨD 0

0 0





 , x =




u

λ


 , b =




p

0


 . (4.129)

Define

S =




Ǩ 0

0 0


 , H =




D 0

0 0


 . (4.130)

Thus

A = Ǎ + SH . (4.131)

Calculate the inverse of Ǎ, and denote

R = Ǎ−1, x0 = Ǎ−1b̌ = Rb̌. (4.132)

Substitution of Eqs. (4.131) and (4.132) in the fixed point iteration yields

x∗(l+1) = (Rb−RA)x0 + (I −RA)(εx∗(l))

= (Rb−R(Ǎ + SH)x0) + (I −R(Ǎ + SH))(εx∗(l))

= Rb− x0 −RSHx0 −RSH(εx∗(l))

= Rb− x0 −RSH(x0 + εx∗(l))

= Rb− x0 −RSM (l)∆. (4.133)

Here RSH(x0 + εx∗(l)) is transformed into RSM (l)∆, so that the interval multipli-

ers occur only once in the computations. The derivations of M and ∆ have been

introduced in Sec. 4.2.5.6.
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The iterations are terminated if

x∗(l+1) ⊆ int(x∗(l)), (4.134)

and one has

x = x0 + x∗(l+1) = Rb−RSM (l)∆. (4.135)

The displacement u can be extracted from x according to Eq. (4.129).

As for stresses, they can be calculated as

σ = CBue

= CBLx

= C(BLRb−BLRSM (l)∆)

= (1 + δ)(ČBLRb− ČBLRSM (l)∆), (4.136)

in which L is a Boolean matrix to extract ue from x.

For truss, beam and frame elements, the solved Lagrange multiplier vector λ can

be used to calculate internal forces at element ends. As mentioned in Sec. 4.2.6, the

term T (Ku−pb) in the EBE model gives the element internal forces at nodes for all

elements. From Eq. (4.127) it follows

T (Ku− pb) = T (pc − cT λ). (4.137)

The right-hand side of Eq. (4.137) will be calculated. The Lagrange multiplier vector

λ is extracted from x using a Boolean matrix L,

λ = Lx. (4.138)

For the interval vector b = (p 0)T , it can be expressed as

b = bc + bb, (4.139)
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in which

bc =




pc

0


 , bb =




pb

0


 . (4.140)

The load pc is extracted from bc by a Boolean matrix Lc

pc = Lcbc, (4.141)

and pb is extracted from bb by a Boolean matrix Lb

pb = Lbbb. (4.142)

Substituting Eqs. (4.135), (4.138), (4.141) and (4.142) in the right-hand side of

Eq. (4.137) yields

T (pc − cT λ) = T (pc − cT L(Rb−RSM (l)∆))

= T (Lc − cT LR)bc − TcT LRbb + TcT LRSM (l)∆. (4.143)

Eq. (4.143) has controlled the occurrences of the interval quantities in the computa-

tions. The sharp bounds for element internal forces at nodes are obtained.

4.2.8 Frame analysis under interval material, cross-sectional properties
and loads

Frame analysis is very common in structural engineering. This section considers the

analysis of two-dimensional frame structures under interval parameters. A frame el-

ement can have not only interval modulus of elasticity and interval loads, as usual,

but also interval cross-sectional area and interval moment of inertia at the same time.

For this case, the procedures introduced in Sec. 4.2.1 to Sec. 4.2.7 are still applica-

ble and can be directly extended. The new technique used is that the coordinate

transformation is delayed for the purpose of dependence control.
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Figure 4.8: A frame element and its nodal d.o.f.

Consider a uniform frame element with a node at each end. For the case of planar

deformation, each node has three d.o.f., namely axial and lateral translations, and ro-

tation (Fig. 4.8). The elementary Euler-Bernoulli beam theory (Ugural and Fenster,

1995) is used. That is, the transverse shear deformation is ignored and only axial and

bending deformations are considered. The stiffness matrix for such a frame element

may thus be derived by combining the stiffness of a beam under pure bending and a

truss element. The two-dimensional frame element stiffness matrix is

k′ =




EA

L
0 0 −EA

L
0 0

0
12EI

L3

6EI

L2
0 −12EI

L3

6EI

L2

0
6EI

L2

4EI

L
0 −6EI

L2

2

L

−EA

L
0 0

EA

L
0 0

0 −12EI

L3
−6EI

L2
0

12EI

L3
−6EI

L2

0
6EI

L2

2

L
0 −6EI

L2

4EI

L




, (4.144)

where E is the modulus of elasticity, I is the moment of inertia, and A is the cross-

sectional area. Now consider a frame element with interval E, I and A. By factoring

out the interval parameters, k′ can be written as
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k′ =




1

L
0 0 − 1

L
0 0

0
12

L3

6

L2
0 −12

L3

6

L2

0
6

L2

4

L
0 − 6

L2

2

L

− 1

L
0 0

1

L
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


·




EA 0 0 0 0 0

0 EI 0 0 0 0

0 0 EI 0 0 0

0 0 0 EA 0 0

0 0 0 0 EI 0

0 0 0 0 0 EI




,

(4.145)

or

k′ = sd. (4.146)

Figure 4.9: A frame element in the global coordinate system xy.

For a frame element of arbitrary orientation (Fig. 4.9), a coordinate transformation

needs to be applied to k′ to obtain the element stiffness matrix in global coordinates,

k = T T
e k′Te (4.147)
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in which Te is the coordinate transformation matrix, given by

Te =




c s 0 0 0 0

−s c 0 0 0 0

0 0 1 0 0 0

0 0 0 c s 0

0 0 0 −s c 0

0 0 0 0 0 1




, (4.148)

where

c = cosβ, s = sinβ.

Note that T T
e Te = TeT

T
e = I. The coordinate transformation will result in the

overlapping of EA and EI. Thus, the decomposition of k into a real matrix and an

interval diagonal matrix is not possible in this case. To overcome this difficulty, the

coordinate transformation will be delayed so that the interval equation can still be

solved using the techniques discussed in Sec. 4.2.5.6.

Using Eq. (4.147), the structure stiffness matrix K in the EBE model can be

expressed as

K =




k1

. . .

kNe




=




(Te)
T
1 s1d1(Te)1

. . .

(Te)
T
Ne

sNedNe(Te)Ne




, (4.149)

or

K = T T SDT, (4.150)

in which
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T =




(Te)1

. . .

(Te)Ne




, S =




s1

. . .

sNe




, D =




d1

. . .

dNe




.

(4.151)

As mentioned in Sec. 4.2.4, constraints must be imposed to make the EBE model

equivalent to the original structure. The penalty method or the Lagrange multiplier

method can be used for this purpose. Let us consider the case in which the penalty

method is used. Substituting Eq. (4.150) in the structural equation (K + Q)u = p

results in

(T T (SD)T + Q)u = p. (4.152)

Using TT T = T T T = I, Eq. (4.152) can be transformed into

(SD + Q′)u′ = p′ (4.153)

where Q′ = TQT T , p′ = Tp and u′ = Tu. Eq. (4.153) can be solved by using the

fixed point iteration procedure with dependence control, as discussed in Sec. 4.2.5.6.

Let A = SD + Q′, R = (S + Q′)−1, and u′0 = Rp̌′, the fixed point iteration is

constructed as

u′∗(l+1) = z + G(εu′∗(l)). (4.154)

For the iterative matrix G, by substituting A by its equivalent matrix (SD + Q′),

the following result can be obtained:

G = I −RA

= I −RQ′ −RSD

= I −RQ′ −RS −RS(D − I)

= −RS(D − I) (4.155)
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The residual term z is expressed as:

z = Rp′ −RAu′0

= Rp′ −R(SD + Q′)u′0

= Rp′ −RQ′u′0 −RSDu′0

= Rp′ −RQ′u′0 −RSMΥ∆. (4.156)

In Eq. (4.156), RSDu′0 is transformed into RSMΥ∆. M is a deterministic matrix

containing the components of u′0. Υ is an interval matrix containing the interval

cross-sectional A and moment of inertia I of each element. It has the form

Υ =




A1

I1

A2

I2

. . .

ANe

INe




. (4.157)

∆ is an interval vector, whose components are the interval modulus of elasticity E

of each element, that is,

∆ = (E1 E2 . . . ENe)
T . (4.158)

The interval parameters (A, I and E) associated with each element occur only

once in Υ and ∆. This transformation eliminates the dependence problem in RSDu′0,

and avoids the overestimation in z. The transformation of Du′0 into MΥ∆ can be

illustrated by the following one-element example:
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


EA 0 0 0 0 0

0 EI 0 0 0 0

0 0 EI 0 0 0

0 0 0 EA 0 0

0 0 0 0 EI 0

0 0 0 0 0 EI




·




u′01

u′02

u′03

u′04

u′05

u′06




=




u′01 0

0 u′02

0 u′03

u′04 0

0 u′05

0 u′06




·




A

I


 · (E)

Suppose u′ has been calculated after l iterations,

u′ = u0 + z + G(εu′∗(l)), (4.159)

the displacement u can be recovered as

u = T T u′ . (4.160)

The above is the formal expression for u. In practice, to obtain a sharp result for

u, all noninterval computations should be performed first. Thus, u is obtained by

substituting Eq. (4.159) into Eq. (4.160), yielding

u = T T u′

= T T u0 + T T z + T T G(εu′∗(l)), (4.161)

in which T T z and T T G(εu′∗(l)) must be calculated, respectively, as

T T z = (T T R)p− T T RQ′u′0 − (T T RSM)Υ∆, (4.162)

T T G(εu′∗(l)) = −((T T RS)(D − I))(εu′∗(l)). (4.163)

4.2.9 Plane stress and plane strain finite elements with interval material
property and loads

The computational procedures presented in Sec. 4.2.1 to 4.2.7 can be applied straight-

forward on plane stress and plane strain problems of isotropic material with interval
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material property and interval loads. According to Eq. (3.12), the element stiffness

matrix is

k =

∫∫

Area

BT CBt dxdy (4.164)

in which B is the strain-displacement matrix, t is the element thickness, C is the

elasticity matrix. For the case of isotropic material, the elasticity matrix C in the

state of plane stress is of the form

C =
E

1− µ2




1 µ 0

µ 1 0

0 0 (1− µ)/2




, (4.165)

or in the state of plane strain

C =
E

(1− µ)(1− 2µ)




1− µ µ 0

µ 1− µ 0

0 0 (1− 2µ)/2




, (4.166)

where µ is the Poisson’s ratio, and E is the modulus of elasticity. We assume that

the modulus of elasticity in C is uncertain and described by an interval variable E.

The interval element stiffness matrix can be expressed as Eq. (4.6):

k = ǩ(I + d)

where ǩ is the deterministic element stiffness matrix evaluated using the midpoint of

E, I is the identity matrix, and d is an interval diagonal matrix, whose entries are the

interval multiplier δ associated with E. The midpoint element stiffness matrix ǩ is

obtained using the conventional FE formulation. Using Eq. (4.6), uncertain modulus

of elasticity can be considered in any isotropic plane stress and plane strain finite

elements such as linear triangle element.
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To track the involvement of interval variables in the computations, the elements

are assembled using the EBE technique (see Sec. 4.2.2). The interval structure stiff-

ness matrix K has a block-diagonal form, and it can be expressed as Eq. (4.18):

K = Ǩ(I + D)

in which D is an interval block diagonal matrix, whose submatrices are the d matrices

of each element. If the loads are also uncertain, the procedures presented in Sec. 4.2.3

are used to eliminate the dependence problems in calculating the interval load vector.

Since the elements are detached in the EBE model, the continuity of the structure

has to be recovered by imposing proper constraints. The penalty method or Lagrange

multiplier method can be used to impose constraints (see Sec. 4.2.4). The resulting

interval structural equations are solved using the fixed point iterations with consid-

erations of the dependence problem of interval arithmetic, discussed in Sec. 4.2.5.4

to 4.2.5.6. After the nodal displacements are solved, the element stresses can be

calculated using the procedures discussed in Sec. 4.2.6.

4.3 Computer Implementation

This section discusses the computer implementation of the interval FEA. The com-

puter programs were developed using standard C++/C, in both the Windows op-

eration system and Unix system. The computational procedures involve many in-

terval and real matrix operations. Two libraries, namely PROFIL/BIAS and NEW-

MAT (Davies, 1991), are used to facilitate the development. PROFIL/BIAS (see

Sec. 2.7) is a C++ class library supporting real and interval arithmetic matrix op-

erations. The supported data types include REAL (double precision is used for

the REAL type), VECTOR, MATRIX, INTEGER MATRIX, INTERVAL, INTER-

VAL VECTOR, and INTERVAL MATRIX. The indexing of all vector and matrix

types starts with 1. PROFIL/BIAS provides basic vector and matrix operations
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for real and interval arithmetic, such as matrix addition, matrix-vector-product and

matrix product.

PROFIL/BIAS is mainly used for the operations involving interval quantities. For

the real matrix operations, the library NEWMAT is preferred. NEWMAT (Davies,

1991) is a C++ library supporting real matrix operations. The supported ma-

trix types include: Matrix, UpperTriangularMatrix, LowerTriangularMatrix, Diag-

onalMatrix, SymmetricMatrix, BandMatrx, SymmetricBandMatrix, RowVector and

ColumnVector. The library includes the basic matrix operations, inverse, transpose,

submatrix, determinant, Cholesky decomposition, eigenvalues of a symmetric matrix,

and sorting.

Both PROFIL/BIAS and NEWMAT are freely available through the Internet.

4.3.1 Implementation of the conventional interval FEA

Three conventional methods for interval finite element analysis were developed as part

of this work, namely the combinatorial method, the Monte Carlo sampling method,

and the näıve interval FEA. These methods are introduced in Sec. 3.2.2, 3.2.6 and 4.1,

respectively. They are mainly used in this work for the evaluation of the developed

interval FEA.

4.3.1.1 Combinatorial method

The computations involved in the combinatorial method are purely deterministic.

The combinatorial method introduces every possible combination of the bounds of

the interval parameters into analysis.

In computer implementation, the interval parameters are stored in a matrix

α =




α1, α1

...
...

αm, αm



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in which αi and αi are the lower and upper bounds of the interval parameter αi,

respectively. The total number of interval parameters is m. The relevant C++ code

implementing the combinatorial method would be something like this

for (int i1 = 1; i1 <= 2; i1 + +){
α1 = α(1, i1);

. . . . . .

for (int im = 1; im <= 2; im + +){
αm = α(m, im);

FEA(α1, . . . , αm);

UpdateBounds;

}
. . . . . .

}

in which FEA(α1, . . . , αm) represents a deterministic finite element analysis routine

with the input data (α1, . . . , αm). According to the results given by FEA(α1, . . . , αm),

the routine UpdateBounds updates the minimal and the maximal responses.

4.3.1.2 Monte Carlo sampling method

The Monte Carlo sampling method involves the following steps: (a) obtaining uniform

samples in the interval ranges of the uncertain parameters, (b) performing determin-

istic FEA for the combination of the sampled parameters, and (c) obtaing the bounds

of the solution set of the simulation results. A straightforward implementation is
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for (int i = 1; i <=numMC; i + +){
for (int j = 1; j <= m; j + +)

αj =uniformRV(αj, αj);

FEA(α1, . . . , αm);

UpdateBounds;

}

in which numMC is the total number of Monte Carlo simulations; uniformRV is

a routine producing uniform samples in the range (αj, αj). FEA(α1, . . . , αm) is a

deterministic finite element analysis routine with the input data (α1, . . . , αm). Based

on the results given by FEA(α1, . . . , αm), the routine UpdateBounds updates the

minimal and the maximal responses.

4.3.1.3 Näıve interval FEA

For the näıve interval FEA, a straightforward implementation is to convert the de-

terministic finite element formulation by replacing each real parameters with interval

parameters and each real operation by its corresponding interval arithmetic opera-

tion. The program structure remains the same as the deterministic finite element

program. The differences are mainly in two aspects:

• data type, namely change from “real” to “interval,”

• equation solution technique.

The conversion was accomplished by using the interval arithmetic library PRO-

FIL/BIAS, which provides interval (matrix) data types and interval operations. The

resulting interval structural equation is solved by the routine ILSS provided in PRO-

FIL/BIAS, which is based on the standard fixed point iteration (see Sec. 4.2.5.4).
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4.3.2 Implementation of the present interval FEA

Based on the computational procedures presented in Sec. 4.2.1 to 4.2.6, planar truss

and frame analysis programs have been developed for analyzing trusses and frames

(beams) with interval material parameter (modulus of elasticity), interval cross-

sectional parameters (cross-sectional area, moment of inertia) and interval load pa-

rameters. Interval modulus of elasticity and interval load parameters have also been

incorporated in the six-node isoparametric quadratic triangle element for solid me-

chanics problems.

The interval FEA is implemented in the following C++ routines:

• A routine to read data.

• A routine for element analysis: calculate the midpoint element stiffness matrix

ǩ, the interval multiplier matrix d, and the matrix w if the element is subjected

to interval surface traction or interval body force.

• A routine to assemble elements by the Element-By-Element technique. Gener-

ate the midpoint structure stiffness matrix Ǩ, the structure interval multiplier

matrix D, and the matrix W associated with surface tractions or body force.

• A routine to generate the load vector pc for external concentrated loads applied

to structure nodes.

• A routine to impose constraints. Generate the penalty matrix Q for the penalty

method, or the matrix c for the Lagrange multipliers method.

• A routine to use fixed point iteration to solve the resulting interval structural

equations.

• A routine to calculate stresses, or element nodal internal forces for frame, beam

and truss elements.
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• A routine to output results.

Sparsity has been exploited in the solution of the interval structural equations.

The midpoint of the interval coefficient matrix is stored using the skyline method.

In the program, the computation is based on the EBE model, while the input data

is based on the original structure. Compared with the original structure, the EBE

model has different node numbering and element connectivity. Thus the structure

needs to be converted into the EBE model. We use the following example to show

how the conversion is implemented.

Figure 4.10: A frame structure with three elements.

Consider the frame shown in Fig. 4.10. There are four nodes and three elements.

The element connectivity is:

Element 1: node numbers: 1, 2

Element 2: node numbers: 2, 3

Element 3: node numbers: 2, 4

The element connectivity information can be described using a vector

CN = (1 2 2 3 2 4).
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Figure 4.11: A frame structure with three elements: the Element-By-Element model.

The EBE model of the frame structure is shown in Fig. 4.11. In the EBE model,

the nodes are renumbered according to the elements which they belong to. For

element i, the node numbers are:

(i− 1) ∗ NNE + 1, . . . , (i− 1) ∗ NNE + NNE

where NNE is the number of nodes per element. For this particular example, the

element connectivity is

Element 1: node numbers: 1, 2

Element 2: node numbers: 3, 4

Element 3: node numbers: 5, 6

The element connectivity information of the EBE model can simply be represented

by a vector

CE = (1 2 3 4 5 6).

By using the two vectors CN and CE, it is easy to map node numbers between

original structure and its corresponding EBE model. For node number i in the orig-

inal structure, the procedure is to simply scan the vector CN, record the indexes of

CN where i appears, and find the corresponding entries in the vector CE. Take the
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example of node 2 in the original structure; it appears three times in CN, and the

corresponding entries in CE are: 2, 3 and 5. This means that the nodes 2, 3 and 5 in

the EBE model are shared nodes, and they must have the same displacements. This

information is used in the routine which imposes constraints. The above mapping of

node numbers between original structure and the EBE model can be illustrated in

Fig. 4.12.




1
2
2
3
2
4




←→
←→

←→




1
2
3
4
5
6




CN CE

Figure 4.12: Node number mapping between original structure and its EBE model.

Note that the vector CE does not need to be generated in practice. Its entries are

equivalent to its indexes, that is

CE(i) = i.

In the output file the results are presented according to the node numbering and

element connectivity of the actual structure. If a node is shared by several elements

(like node 2 in the above frame example), its displacements obtained in all these

elements are presented. The output file for nodal displacements will be something

like this

. . . . . .

node 2:

in element 1: u x [−1.4221, 1.3166] u y [−6.7660,−6.1485] theta [−1.8130,−1.5215]

in element 2: u x [−1.4221, 1.3166] u y [−6.7660,−6.1485] theta [−1.8130,−1.5215]

in element 3: u x [−1.4221, 1.3166] u y [−6.7660,−6.1485] theta [−1.8130,−1.5215]
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. . . . . .

This provides a check for the displacement compatibility and the appropriateness of

the penalty number.
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CHAPTER 5

NUMERICAL EXAMPLES

This chapter presents a series of numerical examples to evaluate the analysis ca-

pabilities of the developed interval FEA. The examples include truss, beam, frame

structures, as well as a continuum problem. The first example is a planar truss struc-

ture with interval axial stiffness. We examine the rigorousness and accuracy of the

presented method, and how its performance varies with the increase of the uncer-

tainty in the parameters. The second example considers a two-span continuous beam

with interval loads and interval bending stiffness. The third example considers a two-

bay two-story planar frame under interval load, interval cross-sectional area, interval

moment of inertia and interval modulus of elasticity. This example illustrates the

capability of the developed method to handle frames with combined uncertain axial

and bending stiffness. In the fourth example, a series of truss structures with a large

number of interval variables are analyzed. The scalability and computational effi-

ciency of the present method are examined. The fifth example considers a steel plate

with uncertain modulus of elasticity. This example demonstrates the application of

the present interval FEA in continuum problems.

For each problem, the quality of the solution obtained by the present interval FEA

is evaluated through comparison with the solutions from some alternative methods

(e.g., the combinatorial method, the sensitivity analysis method, the Monte Carlo

sampling method). These alternative methods yield inner bounds of the response

ranges, while the present method yields outer bounds. By comparing inner and outer

bounds, one can get an approximation for the overestimation of the results obtained

by the present interval FEA.
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5.1 Truss Structure

A planar truss, shown in Fig. 5.1, is considered in this example. The structure consists

of fifteen elements. A combination of horizontal and vertical loads are applied at

nodes 2, 3, 5 and 6, as shown in the figure. The cross-sectional area of each element

is uncertain and introduced as interval variable.

Figure 5.1: Truss structure with 15 elements.

First, two cases are studied to evaluate the rigorousness and the accuracy of the

present method:

Case 1: 1% uncertainty in the cross-sectional areas, and loads are deterministic .

Case 2: 1% uncertainty in the cross-sectional areas, and 10% uncertainty in the

loads.

Fifteen interval variables are present in case 1 (Ai, i = 1, . . . , 15), and nineteen in

case 2 (Ai, i = 1, . . . , 15; pj, j = 1, . . . , 4). A denotes cross-sectional area and i

denotes element number.

Next, the performance of the present method is further tested through a series

of analyses in which the uncertainty in the cross-sectional areas increases gradually,

namely 3%, 5%, 7% and 10% of the midpoint value.

119



It is assumed that all interval variables vary independently within their bounds.

The deterministic and interval variables used are listed in Table 5.1. For each case,

three methods are applied to find the solution: (1) the combinatorial method, (2)

the näıve interval FEA, and (3) the present interval FEA. These three methods are

denoted as combinatorial, näıve IFEA and present IFEA in this chapter, respectively.

Table 5.1: Parameters in the truss of Fig. 5.1.

Parameter Midpoint 1% Uncertainty 5% Uncertainty 10% Uncertainty

Cross-sectional
area A1, A2, A3,
A13, A14, A15 (cm2)

10 [9.95, 10.05] [9.75, 10.25] [9.5, 10.5]

Cross-sectional
area of all other
elements (cm2)

6 [5.97, 6.03] [5.85, 6.15] [5.7, 6.3]

P1 (kN) 200 [190, 210]

P2, P3 (kN) 100 [95, 105]

P4 (kN) 90 [85.5, 94.5]

Modulus of elastic-
ity of all elements
(MPa)

200000 N/A N/A N/A

5.1.1 Deterministic analysis

Before carrying out the interval analysis, the deterministic model of this truss is

analyzed using the developed interval finite element program. The midpoint (nom-

inal) values of the interval variables are used as the input data. For example, the

cross-sectional area of element 1 (A1) is specified as a thin interval [10, 10] in the

input file. The objective of this deterministic analysis is to compare the result with

the one obtained from conventional deterministic FEA, illustrate the compatibility of

displacements at nodes, and determine the range of the penalty number.

In the present interval finite element formulation, the penalty matrix Q in Eq. (4.40)

is calculated as

Q = ηkmaxc
T c, (5.1)
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Table 5.2: Vertical displacement at node 5 of the truss in Fig. 5.1 with deterministic
parameters. El. = element. (unit: meter)

penalty number η v5 in El. 6 v5 in El. 7 v5 in El. 8 v5 in El. 9 v5 in El. 12

102 -0.0664548 -0.0664548 -0.0664392 -0.0664548 -0.0664346

104 -0.0659943 -0.0659943 -0.0659941 -0.0659943 -0.0659941

106 -0.0659897 -0.0659897 -0.0659897 -0.0659897 -0.0659897

108 -0.0659892 -0.0659892 -0.0659892 -0.0659892 -0.0659892

1010 -0.0659474 -0.0659474 -0.0659474 -0.0659474 -0.0659474

1012 -0.0623489 −0.0623489 −0.0623489 −0.0623489 −0.0623489

where η is the penalty number, kmax is the maximum diagonal entry of the midpoint

structure stiffness matrix, and the matrix c contains only zeros and ones. To investi-

gate the influence of η on the result, different values of η were used for analysis. Table

5.2 shows the vertical displacement of node 5 (v5) obtained using different values of

η. Node 5 is shared by five elements, namely element 6, 7, 8, 9, and 12. Each of

these elements gives a value for v5 in the Element-By-Element model. Thus for each

analysis, five values of v5 are presented in Table 5.2. The displacement compatibility

condition requires that the five values of v5 are equal to each other. As seen in Table

5.2, the compatibility condition is ensured when η is equal or greater than 106.

To evaluate the results in Table 5.2, the “exact” value of v5 is obtained by using a

conventional finite element program, GTSTRUDL (2002). The value obtained from

GTSTRUDL is

v
′
5 = −0.0659896 m.

According to the data in Table 5.2 and the exact solution v
′
5, the displacement error

vs. penalty number relationship is plotted in Fig 5.2. The relative error of v5 is

measured as

e =
|v∗5 − v

′
5|

v
′
5

where v∗5 denotes the value of v5 given by element 6 (any other element can be chosen).
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As seen in Fig. 5.2, substantial errors are introduced when η is below 104 and larger

than 109. The range of 106 ∼ 108 for η gives satisfactory results: the penalty number

is large enough to ensure the compatibility, but not so large to provoke numerical

error. In the following interval analyses, η = 107 was used.
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 Figure 5.2: Behavior of the relative error in the vertical displacement of node 5 in
the truss of Fig. 5.1 (deterministic model).

5.1.2 Interval analysis

5.1.2.1 1% uncertainty in cross-sectional areas

Table 5.3 compares the results of calculated displacement bounds of a typical node

(node 5) using the combinatorial method, näıve interval FEA and the present interval

FEA. An informative measurement of accuracy for the present method is its relative

difference with the combinatorial solution. By its nature, the combinatorial solution

is an inner bound, while the present interval FEA gives outer bounds. By compar-

ing these two solutions, one can estimate the overestimations in the results of the

present method. In Table 5.3, the relative difference between these two solutions are
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calculated as ∣∣∣∣
xIFEA − xcomb

xcomb

∣∣∣∣ for lower bound, (5.2)

and ∣∣∣∣
xIFEA − xcomb

xcomb

∣∣∣∣ for upper bound, (5.3)

where xcomb denotes the combinatorial solution, and xIFEA the solution obtained from

the present method.

As shown in Table 5.3, the displacement bounds obtained by the present interval

FEA contain the combinatorial solutions, as expected, with relative difference within a

range of 0.01% to 0.03%. This shows the rigorousness and high accuracy of the present

method in calculating the bounds of the displacement range. The näıve interval FEA,

however, gives severe conservative bounds. A comparison with the combinatorial

solution shows that the näıve solution overestimates the bounds by 90.6% to 147.8%.

The näıve interval FEA could not even get the sign (i.e., direction) correct for some

responses (e.g., the lower bound of u5). The interval results obtained from the näıve

interval FEA are so wide that actually no useful information is obtained. In Table 5.3,

an inner bound is also provided by the present method, based on the calculated outer

bound (see Sec. 4.2.5.6). Compared with the combinatorial solution, the inner bound

of the present method is slightly narrower, with relative differences within a range of

0.01% to 0.03%. Although the combinatorial method yields a slightly better inner

bound in this case, it is much more computationally expensive. The combinatorial

method has exponential complexity, which makes it feasible only for rather small

problems. The results for all nodal displacements, computed with the combinatorial

method, näıve interval FEA, and the present interval FEA, are listed in Table 5.11.

Table 5.4 gives the results for the axial forces of two representative elements,

namely element 7 and 12. As seen from the table, the same observation can be made

as in the case of nodal displacements: the results from the present method sharply

enclose the one obtained by the combinatorial method, and the näıve interval FEA
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yields severe conservative results. The relative difference between the present interval

FEA solution and the combinatorial solution is within a range of 0.02% to 0.07%.

The näıve interval FEA, however, yields results whose relative difference with the

combinatorial solution ranges from 322% to 1596%. Table 5.12 lists the axial force

for all elements, computed with the combinatorial method, the näıve interval FEA,

and the present interval FEA.

Table 5.3: Bounds of displacement at Node 5 of the truss in Fig. 5.1, with 1% uncer-
tainty in cross-sectional areas. (unit: meter)

Method u5 u5 v5 v5

Combinatorial 0.018606 0.018815 −0.066321 −0.065661

Näıve IFEA −0.008894 0.046314 −0.126405 −0.005574

δ 147.80% 146.15% 90.60% 91.51%

Present IFEA (inner) 0.018608 0.018812 −0.066304 −0.065675

δ 0.01% 0.02% 0.03% 0.02%

Present IFEA 0.018603 0.018818 −0.066335 −0.065644

δ 0.02% 0.01% 0.02% 0.03%

δ: relative difference with respect to combinatorial solution.

Table 5.4: Bounds of axial force of element 7 and 12 in the truss of Fig. 5.1, with 1%
uncertainty in cross-sectional areas. (unit: kN)

Method N 7 N 7 N 12 N 12

Combinatorial 287.960 289.127 113.082 114.865

Näıve IFEA −639.828 1219.800 −1691.587 1920.101

δ 322.19% 321.89% 1595.89% 1571.62%

Present IFEA 287.910 289.176 113.009 114.939

δ 0.02% 0.02% 0.07% 0.06%

δ: relative difference with respect to combinatorial solution.

It should be noted that the truss in Fig. 5.1 is internally indeterminate but ex-

ternally determinate. The support reactions and the axial forces in element 1, 2, 14
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and 15 are independent of the structural stiffness. Thus, these axial forces are deter-

ministic although the structural stiffness is uncertain. This phenomenon is correctly

captured by the present interval FEA. The bounds for axial forces in element 1, 2, 14

and 15 are obtained as thin intervals

N1 = [267.5, 267.5] kN, N2 = [−251.023, −251.023],

N14 = [222.5, 222.5] kN, N15 = [−314.663, −314.663],

as listed in Table 5.12.

5.1.2.2 1% uncertainty in cross-sectional areas and 10% uncertainty in loads

This case illustrates the capability of the present method to handle uncertain stiffness

and uncertain loads simultaneously. The results for the displacement of node 5 and

axial forces in element 7 and 12 are given in Tables 5.5 and 5.6, respectively. The

results in the tables indicate that the solutions from the present interval FEA sharply

enclose the corresponding combinatorial solutions. For the bounds of displacements,

the relative difference between the combinatorial solutions and the present interval

FEA solutions is within a range of 0.11% to 0.25%. For the bounds of axial forces, the

relative difference between these two solutions is within a range of 0.15% to 0.67%.

The rigorousness and the accuracy of the present method are thus demonstrated.

From Tables 5.5 and 5.6, it is also observed that the results obtained by the näıve

interval FEA are very wide. A comparison with the combinatorial solutions indicates

that the näıve solution overestimates the bounds of the axial force by 327.27% to

1850.52%. This highlights the importance of accounting for dependence problem in

the interval FEA.

The results for all nodal displacements, obtained by the combinatorial method,

näıve interval FEA, and the present interval FEA, are presented in Table 5.13. The

axial force for all elements are summarized in Table 5.14.
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Table 5.5: Bounds of displacement at Node 5 of the truss in Fig. 5.1 with 1% uncer-
tainty in cross-sectional areas and 10% uncertainty in loads. (unit: meter)

Method u5 u5 v5 v5

Combinatorial 0.017676 0.019756 −0.069637 −0.062378

Näıve IFEA −0.011216 0.048636 −0.132739 0.000760

δ 163.45% 146.18% 90.62% 101.22%

Present IFEA (inner) 0.017687 0.019723 −0.069483 −0.062496

δ 0.12% 0.17% 0.22% 0.19%

Present IFEA 0.017642 0.019778 −0.069755 −0.062224

δ 0.19% 0.11% 0.17% 0.25%

δ: relative difference with respect to combinatorial solution.

Table 5.6: Bounds of axial force of element 7 and 12 in the truss of Fig. 5.1, with 1%
uncertainty in cross-sectional areas and 10% uncertainty in loads. (unit: kN)

Method N 7 N 7 N 12 N 12

Combinatorial 273.562 303.584 106.451 121.568

Näıve IFEA −717.152 1297.124 −1863.438 2092.526

δ 362.15% 327.27% 1850.52% 1621.28%

Present IFEA 273.049 304.037 105.733 122.215

δ 0.19% 0.15% 0.67% 0.53%

δ: relative difference with respect to combinatorial solution.

5.1.2.3 Performance of the present method

To further test how the performance of the present method varies with increasing

uncertainty in the parameters, a series of analyses are carried out with the uncertainty

in cross-sectional areas being 1% (discussed in Sec. 5.1.2.1), 3%, 5%, 7% and 10% of

the midpoint value. The loads are considered deterministic. The results for the cases

of 5% and 10% uncertainty are presented in detail here.

For the case when the cross-sectional area of each element has 5% uncertainty,

the results for selected nodal displacements and element axial forces are given in
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Tables 5.7 and 5.8, respectively. As seen from the tables, the solutions obtained

by the present method contain the combinatorial solutions. The relative difference

between these two solutions is less than 0.8% for the displacement, and less than

1.9% for the axial forces. It illustrates that the solutions from the present interval

FEA remain very sharp, as the uncertainty increases to 5%. The results for all nodal

displacements and element axial forces are presented in Tables 5.15 and 5.16. As for

the näıve interval FEA, the increased uncertainty adds the overestimations in the

computations due to the dependence problem. Consequently, the resulting interval

structural equation cannot be solved due to the failure of the fixed point iteration to

converge.

Table 5.7: Bounds of displacement at Node 5 of the truss in Fig. 5.1, with 5% uncer-
tainty in cross-sectional areas. (unit: meter)

Method u5 u5 v5 v5

Combinatorial 0.018199 0.019247 −0.067682 −0.064380

Present IFEA (inner) 0.018267 0.019153 −0.067185 −0.064794

δ 0.38% 0.49% 0.73% 0.64%

Present IFEA 0.018105 0.019315 −0.068094 −0.063886

δ 0.51% 0.35% 0.61% 0.77%

Näıve IFEA No convergence

δ: relative difference with respect to combinatorial solution.

Table 5.8: Bounds of axial force of element 7 and 12 in the truss of Fig. 5.1, with 5%
uncertainty in cross-sectional areas. (unit: kN)

Method N 7 N 7 N 12 N 12

Combinatorial 285.628 291.467 109.510 118.421

Present IFEA 284.148 292.938 107.293 120.654

δ 0.52% 0.50% 2.02% 1.89%

Näıve IFEA No convergence

δ: relative difference with respect to combinatorial solution.
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For the case of 10% uncertainty, Tables 5.9 and 5.10 compare the results of selected

nodal displacements and element forces calculated using the present method and the

combinatorial method. The näıve interval FEA could not converge at this level of

uncertainty. It may be seen from the tables that as the uncertainty increases to 10%,

the discrepancy between the present interval FEA solution and the combinatorial

solution increases accordingly, but still within a reasonable range. Useful information

about the response ranges can still be obtained by the present method. For example,

according to Table 5.10 the axial force in element 7 is guaranteed to lie between

274.962 kN and 302.124 kN. The results for all nodal displacements and element

axial forces are summarized in Tables 5.17 and 5.18, respectively.

Table 5.9: Bounds of displacement at Node 5 of the truss in Fig. 5.1, with 10%
uncertainty in cross-sectional areas. (unit: meter)

Method u5 u5 v5 v5

Combinatorial 0.017711 0.019811 −0.069463 −0.062847

Present IFEA (inner) 0.018074 0.019347 −0.066927 −0.065052

δ 2.05% 2.34% 3.65% 3.51%

Present IFEA 0.017252 0.020168 −0.071652 −0.060328

δ 2.59% 1.80% 3.15% 4.01%

Näıve IFEA No converge

δ: relative difference with respect to combinatorial solution.

Table 5.10: Bounds of axial force of element 7 and 12 in the truss of Fig. 5.1, with
10% uncertainty in cross-sectional areas. (unit: kN)

Method N 7 N 7 N 12 N 12

Combinatorial 282.722 294.400 105.028 122.852

Present IFEA 274.962 302.124 93.297 134.651

δ 2.74% 2.62% 11.17% 9.60%

Näıve IFEA No convergence

δ: relative difference with respect to combinatorial solution.
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To illustrate the effects of the uncertainty level on the obtained solutions, the

vertical displacement at node 5 and the axial force in element 7 are plotted as a

function of the uncertainty level, shown in Fig. 5.3 and 5.4, respectively. The solutions

obtained by the present method and the combinatorial method are plotted in the same

figure for comparison. As seen clearly in the figures, the solution from the present

method always encloses the one from the combinatorial method.
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Figure 5.3: Vertical displacement at node 5 in the truss of Fig. 5.1: comparison of
combinatorial method and present method. (LB=lower bound, UB=upper bound).

5.1.2.4 Discussions

Based on the results presented in Sec. 5.1.2.1 to 5.1.2.3, some conclusions can be

drawn:

1. In all the cases analyzed, the bounds of the response quantities (displacement

and axial force) obtained by the present interval FEA enclose those obtained

by the combinatorial method.

2. For moderate uncertainty (no more than 5%), the present interval FEA yields
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Figure 5.4: Axial force of element 7 in the truss of Fig. 5.1: comparison of combina-
torial method and present method. (LB=lower bound, UB=upper bound).

very sharp bounds for the responses.

3. For relatively large uncertainty (within the range of 5% to 10%), the present

interval FEA yields reasonable bounds for the responses.

4. Even for small uncertainty (e.g., 1%), the näıve interval FEA gives overly con-

servative results. No useful information can be obtained. The näıve interval

FEA fails to converge as the uncertainty exceeds 5%.
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Table 5.11: Bounds of displacement of the truss in Fig. 5.1, with 1% uncertainty in
cross-sectional areas. (unit: meter)

Combinatorial Näıve IFEA Present IFEA

Displ. LB UB LB UB LB UB

u2 0.006654 0.006721 −0.004258 0.017633 0.006654 0.006721

v2 −0.048578 −0.048074 −0.095735 −0.000914 −0.048588 −0.048061

u3 0.032538 0.032959 −0.003961 0.069457 0.032529 0.032966

v3 −0.045542 −0.045058 −0.091831 0.001233 −0.045549 −0.045048

u4 0.019068 0.019431 −0.008331 0.046830 0.019060 0.019438

v4 −0.063696 −0.063040 −0.125689 −0.001044 −0.063711 −0.063023

u5 0.018606 0.018815 −0.008894 0.046314 0.018603 0.018818

v5 −0.066321 −0.065661 −0.126405 −0.005574 −0.066335 −0.065644

u6 0.029561 0.029895 −0.011640 0.071094 0.029554 0.029900

v6 −0.048208 −0.047694 −0.093462 −0.002438 −0.048219 −0.047681

u7 0.006433 0.006809 −0.011464 0.024705 0.006425 0.006816

v7 −0.044648 −0.044159 −0.088005 −0.000800 −0.044657 −0.044147

u8 0.035095 0.035486 −0.012211 0.082790 0.035087 0.035492

u: horizontal displacement. v: vertical displacement.

Subscripts indicate node number. LB denotes lower bound, and UB upper bound.
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Table 5.12: Bounds of axial force of the truss in Fig. 5.1 with 1% uncertainty in
cross-sectional areas. (unit: kN)

Combinatorial Näıve IFEA Present IFEA

Element LB UB LB UB LB UB

1 267.500 267.500 −171.167 708.842 267.500 267.500

2 −251.023 −251.023 −1925.425 1420.869 −251.023 −251.023

3 120.460 121.627 −3655.217 3898.148 120.410 121.677

4 −324.540 −323.373 −1876.232 1225.079 −324.590 −323.323

5 −30.586 −28.934 −1818.021 1758.219 −30.655 −28.864

6 79.016 80.667 −1985.834 2145.647 78.946 80.737

7 287.960 289.127 −639.828 1219.800 287.910 289.176

8 61.964 63.942 −2898.519 3023.965 61.877 64.026

9 263.778 265.039 −1397.856 1929.317 263.726 265.091

10 −303.722 −302.461 −1406.033 796.819 −303.774 −302.409

11 −60.159 −58.377 −2191.846 2072.551 −60.232 −58.302

12 113.082 114.865 −1691.587 1920.101 113.009 114.939

13 141.278 142.539 −3440.760 3725.340 141.226 142.591

14 222.500 222.500 −3348.870 3796.095 222.500 222.500

15 −314.663 −314.663 −2510.903 1878.592 −314.663 −314.663

LB denotes lower bound, and UB upper bound.
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Table 5.13: Bounds of displacement of the truss in Fig. 5.1 with 1% uncertainty in
cross-sectional areas and 10% uncertainty in loads. (unit: meter)

Combinatorial Näıve IFEA Present IFEA

Displ. LB UB LB UB LB UB

u2 0.006322 0.007057 −0.005142 0.018517 0.006318 0.007057

v2 −0.051007 −0.045670 −0.100533 0.003883 −0.051095 −0.045555

u3 0.030911 0.034607 −0.007442 0.072938 0.030831 0.034664

v3 −0.047819 −0.042805 −0.096433 0.005836 −0.047885 −0.042712

u4 0.018115 0.020403 −0.010678 0.049177 0.018037 0.020462

v4 −0.066881 −0.059888 −0.131988 0.005255 −0.067006 −0.059727

u5 0.017676 0.019756 −0.011216 0.048636 0.017642 0.019778

v5 −0.069637 −0.062378 −0.132739 0.000760 −0.069755 −0.062224

u6 0.028083 0.031390 −0.015204 0.074658 0.028021 0.031433

v6 −0.050618 −0.045310 −0.098145 0.002245 −0.050716 −0.045184

u7 0.006111 0.007149 −0.012703 0.025944 0.006033 0.007208

v7 −0.046880 −0.041951 −0.092415 0.003611 −0.046957 −0.041847

u8 0.033341 0.037260 −0.016361 0.086940 0.033259 0.037321

u: horizontal displacement. v: vertical displacement.

Subscripts indicate node number. LB denotes lower bound, and UB upper bound.
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Table 5.14: Bounds of axial force of the truss in Fig. 5.1 with 1% uncertainty in
cross-sectional areas and 10% uncertainty in loads. (unit: kN)

Combinatorial Näıve IFEA Present IFEA

Element LB UB LB UB LB UB

1 254.125 280.875 −206.705 744.380 254.125 280.875

2 −266.756 −235.290 −2087.898 1583.342 −266.756 −235.290

3 113.390 128.749 −4032.722 4276.019 112.881 129.206

4 −340.767 −307.204 −2016.817 1365.664 −341.221 −306.692

5 −36.144 −23.432 −1990.705 1930.888 −36.799 −22.721

6 72.376 87.363 −2187.039 2347.521 71.665 88.018

7 273.562 303.584 −717.152 1297.124 273.049 304.037

8 57.663 68.285 −3201.886 3328.419 56.834 69.069

9 250.590 278.291 −1539.817 2071.278 250.075 278.741

10 −318.908 −287.338 −1492.541 883.327 −319.359 −286.824

11 −65.725 −52.882 −2395.291 2276.163 −66.371 −52.164

12 106.451 121.568 −1863.438 2092.526 105.733 122.215

13 134.215 149.666 −3805.355 4090.591 133.700 150.116

14 211.375 233.625 −3658.966 4106.191 211.375 233.625

15 −330.396 −298.929 −2707.870 2075.398 −330.396 −298.929

LB denotes lower bound, and UB upper bound.
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Table 5.15: Bounds of displacement of the truss in Fig. 5.1 with 5% uncertainty in
cross-sectional areas. (unit: meter)

Combinatorial Present IFEA (inner) Present IFEA

Displ. LB UB LB UB LB UB

u2 0.006524 0.006859 0.006525 0.006850 0.006516 0.006859

v2 −0.049617 −0.047093 −0.04926 −0.047391 −0.049914 −0.046736

u3 0.031715 0.033821 0.031926 0.033569 0.031464 0.034031

v3 −0.046537 −0.044117 −0.04624 −0.044355 −0.046773 −0.043824

u4 0.018353 0.020167 0.018569 0.019930 0.018116 0.020383

v4 −0.065049 −0.061765 −0.06454 −0.062196 −0.065477 −0.061256

u5 0.018199 0.019247 0.018267 0.019153 0.018105 0.019315

v5 −0.067682 −0.064380 −0.06719 −0.064794 −0.068094 −0.063886

u6 0.028911 0.030586 0.029048 0.030406 0.028732 0.030723

v6 −0.049264 −0.046695 −0.04886 −0.047040 −0.049608 −0.046292

u7 0.005684 0.007564 0.005912 0.007329 0.005450 0.007791

v7 −0.045654 −0.043206 −0.04532 −0.043489 −0.045935 −0.042869

u8 0.034338 0.036291 0.034526 0.036053 0.034101 0.036479

u: horizontal displacement. v: vertical displacement.

Subscripts indicate node number. LB denotes lower bound, and UB upper bound.

135



Table 5.16: Bounds of axial force of the truss in Fig. 5.1 with 5% uncertainty in
cross-sectional areas. (unit: kN)

Combinatorial Present IFEA

Element LB UB LB UB

1 267.500 267.500 267.500 267.500

2 −251.023 −251.023 −251.023 −251.023

3 118.128 123.967 116.649 125.438

4 −326.872 −321.033 −328.351 −319.562

5 −33.895 −25.637 −35.975 −23.545

6 75.707 83.964 73.627 86.057

7 285.628 291.467 284.148 292.938

8 58.036 67.930 55.455 70.448

9 261.264 267.565 259.684 269.132

10 −306.236 −299.935 −307.815 −298.368

11 −63.731 −54.820 −65.948 −52.587

12 109.510 118.421 107.293 120.654

13 138.764 145.065 137.184 146.632

14 222.500 222.500 222.500 222.500

15 −314.663 −314.663 −314.663 −314.663

LB denotes lower bound, and UB upper bound.
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Table 5.17: Bounds of displacement of the truss in Fig. 5.1 with 10% uncertainty in
cross-sectional areas. (unit: meter)

Combinatorial Present IFEA (inner) Present IFEA

Displ. LB UB LB UB LB UB

u2 0.006369 0.007039 0.006371 0.007004 0.006336 0.007039

v2 −0.050974 −0.045917 −0.049148 −0.047501 −0.052546 −0.044103

u3 0.030720 0.034939 0.031836 0.033659 0.029451 0.036045

v3 −0.047836 −0.042988 −0.046347 −0.044250 −0.049087 −0.041511

u4 0.017473 0.021108 0.018610 0.019888 0.016261 0.022237

v4 −0.066817 −0.060238 −0.064202 −0.062531 −0.069095 −0.057638

u5 0.017711 0.019811 0.018074 0.019347 0.017252 0.020168

v5 −0.069463 −0.062847 −0.066927 −0.065052 −0.071652 −0.060328

u6 0.028133 0.031490 0.028863 0.030592 0.027244 0.032211

v6 −0.050643 −0.045495 −0.048569 −0.047331 −0.052467 −0.043433

u7 0.004750 0.008517 0.005939 0.007302 0.003542 0.009699

v7 −0.046966 −0.042062 −0.045246 −0.043558 −0.048450 −0.040354

u8 0.033431 0.037345 0.034423 0.036156 0.032252 0.038328

u: horizontal displacement. v: vertical displacement.

Subscripts indicate node number. LB denotes lower bound, and UB upper bound.
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Table 5.18: Bounds of axial force of the truss in Fig. 5.1 with 10% uncertainty in
cross-sectional areas. (unit: kN)

Combinatorial Present IFEA

Element LB UB LB UB

1 267.500 267.500 267.500 267.500

2 −251.023 −251.023 −251.023 −251.023

3 115.222 126.900 107.462 134.625

4 −329.778 −318.100 −337.538 −310.375

5 −38.043 −21.527 −48.967 −10.553

6 71.559 88.075 60.635 99.049

7 282.722 294.400 274.962 302.124

8 53.183 72.971 39.609 86.294

9 258.131 270.734 249.787 279.029

10 −309.369 −296.766 −317.713 −288.470

11 −68.213 −50.390 −79.945 −38.590

12 105.028 122.852 93.297 134.651

13 135.631 148.234 127.287 156.529

14 222.500 222.500 222.500 222.500

15 −314.663 −314.663 −314.663 −314.663

LB denotes lower bound, and UB upper bound.
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5.2 Beam Structure

The second example is a two-span continuous beam as shown in Fig. 5.5. The beam

is subjected to a uniform load w acting on the left span, and a concentrated load

p in the middle of the right span. The modulus of elasticity of the beam is 200

GPa. The loads and the moment of inertia of the beam are uncertain and described

by interval variables. The nominal (midpoint) value of the moment of inertia is

IAB = 120 × 106 mm4 for the left span, and IBC = 90 × 106 mm4 for the right span.

The uncertain parameters are described by the following intervals:

w = [3, 4.5] kN/m, p = [30, 40] kN,

IAB = [118.8, 121.2]× 106 mm4, IBC = [89.1, 90.9]× 106 mm4.

The uncertainty introduced is 2% for IAB and IBC, 40% for w, and 28.6% for p.

Figure 5.5: Two-span continuous beam.

Tables 5.19 and 5.20 compare the results of calculated typical displacement and

internal moment using the combinatorial method, Monte Carlo sampling method,

näıve interval FEA and present interval FEA. 107 samples are made in the Monte

Carlo sampling method. The result from the combinatorial method is chose as a

reference, and the relative differences between the combinatorial solution and other

solutions are listed in the tables. It is observed that the combinatorial method, the

Monte Carlo sampling method and the present method yield solutions very close to

each other. Also, we have

xMC ⊆ xcomb ⊆ xIFEA
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where xMC denotes the Monte Carlo sampling solution, xcomb the combinatorial so-

lution, and xIFEA the present interval FEA solution. The relative difference between

xcomb and xIFEA is within a range of 0.11% to 0.92% for the displacement, and 0.03%

to 0.38% for the moment. The accuracy of the present method is thus highlighted.

It is also observed that the näıve interval FEA yields overly conservative result. A

comparison with the combinatorial solution illustrates that the näıve interval FEA

overestimates the bounds of internal moment by 20.66% to 80.38%.

Table 5.19: Bounds of selected nodal displacement for the beam in Fig. 5.5 with
uncertain loads and moment of inertia.

Method vD (m) vD (m) θC (rad) θC (rad)

Combinatorial −0.013933 −0.008948 0.003716 0.005642

Monte Carlo −0.013862 −0.008993 0.003735 0.005613

δ 0.51% 0.50% 0.50% 0.51%

Näıve IFEA −0.015045 −0.007786 0.003066 0.006273

δ 7.98% 12.98% 17.50% 11.19%

Present IFEA −0.013949 −0.008877 0.003682 0.005655

δ 0.11% 0.79% 0.92% 0.23%

δ: relative difference with respect to combinatorial solution.
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Table 5.20: Bounds of bending moment of the beam in Fig. 5.5 with uncertain loads
and moment of inertia. (unit: kN-m)

Method MB MB MD MD

Combinatorial −48.6589 −35.2901 40.2994 57.7973

Monte Carlo −48.5877 −35.3497 40.3168 57.7499

δ 0.15% 0.17% 0.04% 0.08%

Näıve IFEA −58.7121 −25.4424 7.9059 90.3078

δ 20.66% 27.91% 80.38% 56.25%

Present IFEA −48.7564 −35.1572 40.2041 57.8138

δ 0.20% 0.38% 0.24% 0.03%

δ: relative difference with respect to combinatorial solution.

5.3 Frame Structure

In this example a two-bay two-story planar frame shown in Fig. 5.6 is considered.

The frame is adopted from the work of Buonopane et al. (2003). In the figure the

column is denoted as “C” and the beam as “B.” Subscripts indicate member number.

The frame is subjected to uniform loads acting on the member B1, B2, B3 and B4.

The geometric and material properties of each member are summarized in Table 5.21.

Two cases are analyzed in this example. In the first case, the four uniform loads

wi (i = 1, 2, 3, 4) are considered uncertain and described by the following interval

variables:

w1 = [105.8, 113.1] kN/m, w2 = [105.8, 113.1] kN/m,

w3 = [49.255, 52.905] kN/m, w4 = [49.255, 52.905] kN/m.

All other parameters are deterministic. The nominal values (midpoint) of the cross-

sectional properties of the members are used in analysis. The modulus of elasticity of

each member is 200 GPa. In the second case, the loads are the same interval variables

as in case 1. The cross-sectional area, moment of inertia and modulus of elasticity

of each member are considered uncertain as well, and the variations are 1% of their
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Figure 5.6: Two-bay two-story frame.

nominal values. The intervals used are summarized in Table 5.21. In both cases, it

is assumed that all interval variables vary independently within their bounds.

Table 5.21: Interval properties for the members of the frame in Fig. 5.6.

Member Shape A (cm2) I(cm4) E(GPa)

C1 W12×19 [35.76, 36.12] [5383.95, 5438.06] [199, 201]

C2 W14×132 [249.07, 251.57] [63364.99, 64001.83] [199, 201]

C3 W14×109 [205.42, 207.48] [51354.63, 51870.76] [199, 201]

C4 W10×12 [22.72, 22.95] [2228.13, 2250.52] [199, 201]

C5 W14×109 [205.42, 207.48] [51354.63, 51870.76] [199, 201]

C6 W14×109 [205.42, 207.48] [51354.63, 51870.76] [199, 201]

B1 W27×84 [159.20, 160.80] [118032.83, 119219.09] [199, 201]

B2 W36×135 [254.85, 257.41] [323037.21, 326283.81] [199, 201]

B3 W18×40 [75.75, 76.51] [25346.00, 25600.73] [199, 201]

B4 W27×94 [177.82, 179.60] [135427.14, 136788.21] [199, 201]
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5.3.1 Case with only load uncertainty

If only loads involve interval variables, the exact ranges of the system responses can

be obtained, as discussed in Sec. 4.2.3.2. For comparison purpose the combinatorial

method is also used. It should be noted that the combinatorial method yields the

exact solution in this case. The reason for this is that the response quantities are

linear functions of the loads.

Table 5.22 summarizes the displacement bounds at node 5 and node 9, obtained by

the combinatorial method and the present interval FEA. Table 5.23 gives the member

nodal forces of member B2 (left node) and C5 (bottom node). It is observed that the

present interval FEA yields the same bounds as the combinatorial method. For other

nodal displacements and member nodal forces obtained by the present method, a

complete agreement with the exact solution (combinatorial solution) is also observed.

Table 5.22: Bounds of selected nodal displacement for the frame in Fig. 5.6 with only
load uncertainty.

Combinatorial Present IFEA

Displ. LB UB LB UB

u5 (cm) −0.73386 −0.68373 −0.73386 −0.68373

v5 (cm) −0.24502 −0.22888 −0.24502 −0.22888

θ5 (rad) −0.00411 −0.00354 −0.00411 −0.00354

u9 (cm) −1.48008 −1.38317 −1.48008 −1.38317

v9 (cm) −0.20772 −0.19300 −0.20772 −0.19300

θ9 (rad) 0.00525 0.00598 0.00525 0.00598

LB denotes lower bound, and UB upper bound.

5.3.2 Case with stiffness uncertainty and load uncertainty

In this case, in addition of load uncertainty, the cross-sectional area, moment of in-

ertia, and modulus of elasticity of each member are also considered uncertain and
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Table 5.23: Bounds of selected member nodal forces for the frame in Fig. 5.6 with
only load uncertainty.

Combinatorial Present IFEA

Member (node) Nodal force LB UB LB UB

B2 Axial (kN) 219.60 239.37 219.60 239.37

(left node) Shear (kN) 833.61 891.90 833.61 891.90

Moment (kN-m) 1847.21 1974.95 1847.21 1974.95

C5 Axial (kN) −618.28 −574.05 −618.28 −574.05

(bottom node) Shear (kN) −287.22 −262.45 −287.22 −262.45

Moment (kN-m) −680.06 −622.93 −680.06 −622.93

LB denotes lower bound, and UB upper bound.

Axial force: tension (+). Moment: counter clockwise (+).

introduced as interval variables. The descriptions of the interval material and geom-

etry parameters are listed in 5.21. There are thirty-four interval variables involved in

this case. The combinatorial method requires 234 deterministic FEA, which is com-

putationally infeasible. Monte Carlo sampling method is used instead to evaluate the

quality of the results obtained by the present interval FEA. 106 samples are made.

The displacement at node 5 and node 9, and the member nodal force of mem-

ber B2 (left node) and C5 (bottom node) are summarized in Tables 5.24 and 5.25,

respectively. As seen from the tables, the solution obtained by the present method

sharply encloses the one from Monte Carlo sampling method. This suggests that

the overestimation of the bounds obtained by the present interval FEA is small, and

sharp bounds are obtained.
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Table 5.24: Bounds of selected nodal displacement for the frame in Fig. 5.6 with
stiffness uncertainty and load uncertainty.

Monte Carlo Sampling Present IFEA

Displ. LB UB LB UB

u5 (cm) −0.76882 −0.65149 −0.78265 −0.62739

v5 (cm) −0.24745 −0.22655 −0.24778 −0.22610

θ5 (rad) −0.00414 −0.00351 −0.00417 −0.00348

u9 (cm) −1.52209 −1.34186 −1.56420 −1.29056

v9 (cm) −0.20962 −0.19119 −0.21009 −0.19064

θ9 (rad) 0.00519 0.00603 0.00515 0.00607

LB denotes lower bound, and UB upper bound.

Table 5.25: Bounds of selected member nodal forces for the frame in Fig. 5.6 with
stiffness uncertainty and load uncertainty.

Monte Carlo Sampling Present IFEA

Member (node) Nodal force LB UB LB UB

B2 Axial (kN) 218.23 240.98 216.35 242.67

(left node) Shear (kN) 833.34 892.24 832.96 892.47

Moment (kN-m) 1842.86 1979.32 1839.01 1982.63

C5 Axial (kN) −618.63 −573.34 −619.00 −573.29

(bottom node) Shear (kN) −288.69 −261.16 −289.84 −259.59

Moment (kN-m) −683.94 −619.79 −688.02 −614.90

LB denotes lower bound, and UB upper bound.

Axial force: tension (+). Moment: counter clockwise (+).
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5.4 Trusses with a large number of interval vari-

ables

A series of truss structures are analyzed in this example. The goal of the analysis is

to investigate the ability of the developed interval FEA to handle problems with a

large number of interval variables, its scalability and computational efficiency. The

trusses analyzed are based on those of Pownuk (2004a,b). The configuration of the

truss structure is shown in Fig. 5.7. The truss consists of m bays and n stories.

Concentrated nodal loads are applied in the horizontal direction at the left edge nodes

and in the vertical direction at the top edge nodes, as illustrated in Fig. 5.7. The loads

are deterministic with value of P for each concentrated nodal load. Each element is

assigned two interval variables for its cross-sectional area and modulus of elasticity,

respectively. Hence, the total number of interval variables is twice the number of

elements in the structure. It is assumed that the midpoint of the cross-sectional area

of all elements is A, and the midpoint of the modulus of elasticity of all elements is E.

For all interval variables, the introduced uncertainty is 1% of their midpoint values.

Therefore, for i-th element, the cross-sectional area is Ai = [0.995, 1.005]A, and the

modulus of elasticity is Ei = [0.995, 1.005]E. All interval variables are assumed to

vary independently within their bounds.

In most prior studies of the FEA dealing with interval variables, the number of

interval variables considered is rather small (<< 100). In this example, a total of

ten trusses are analyzed with the number of interval variables ranging from 246 to

2576. In this sense, the problems considered here is “large” scale. Table 5.26 lists the

combinations of story (n) and bay (m) for each truss, and the corresponding number

of elements and interval variables.
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Figure 5.7: m bay - n story truss.

5.4.1 Scalability study

The scalability of the present method is examined through the study of how its

performance varies with increasing number of interval variables. Due to the large

number of interval variables in this example, the combinatorial method is infeasi-

ble, and the näıve interval FEA does not converge. The sensitivity analysis method

(Pownuk, 2004a,b) is used for the evaluation of the present method. As discussed in

Sec. 3.2.4, the sensitivity analysis method is based on the monotonicity assumption

of the response quantities, and can provide a good inner bound when the parameter

uncertainty is small.

The results for a typical displacement, namely the vertical displacement at the
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Table 5.26: Truss structures analyzed.

Truss (story× bay) Num. elements Num. interval variables

3× 10 123 246

4× 12 196 392

4× 20 324 648

5× 22 445 890

5× 30 605 1210

6× 30 726 1452

6× 35 846 1692

6× 40 966 1932

7× 40 1127 2254

8× 40 1288 2576

right upper corner (node D) of the trusses are summarized in Table 5.27. The dis-

placement vD has a form as

vD = a
PL

EA
.

Only the dimensionless part a is presented in the table. Table 5.27 compares the

solutions obtained by the present method with those from the sensitivity analysis.

The midpoint solution d0 is also listed, i.e., the deterministic solution obtained when

the parameters take their midpoint (nominal) values. For the solution from the

present method, the ratio of its width to the midpoint solution is also listed in the

table.

From Table 5.27, it is observed that the solutions from the present method are

slightly wider than those from the sensitive analysis method in all problems. In

the three-story ten-bay truss involving 246 interval variables, the relative difference

between these two solutions is 0.12% and 0.1% for the lower bound and upper bound,

respectively. As the problem scale increases to eight-story forty-bay with 2576 interval

variables, the relative difference between these two solutions is 0.48% and 0.45% for

the lower bound and upper bound, respectively. This comparison indicates that the
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Table 5.27: Bounds for vertical displacement at node D of the trusses in Fig. 5.7,
with 1% uncertainty in cross-sectional area and modulus of elasticity.

Truss Midpoint Sensitivity Anal. Present IFEA

story×bay solution d0 LB∗ UB∗ LB UB δLB δUB wid/d0

3×10 2.5447 2.5143 2.5756 2.5112 2.5782 0.12% 0.10% 2.64%

4×12 3.4193 3.3782 3.4612 3.3723 3.4664 0.18% 0.15% 2.75%

4×20 3.3001 3.2592 3.3418 3.2532 3.3471 0.18% 0.16% 2.84%

5×22 4.1309 4.0791 4.1837 4.0690 4.1928 0.25% 0.22% 3.00%

5×30 4.1005 4.0486 4.1532 4.0386 4.1624 0.25% 0.22% 3.02%

6×30 4.9246 4.8617 4.9886 4.8462 5.0030 0.32% 0.29% 3.18%

6×35 4.9111 4.8482 4.9751 4.8326 4.9895 0.32% 0.29% 3.19%

6×40 4.9054 4.8425 4.9694 4.8270 4.9838 0.32% 0.29% 3.20%

7×40 5.7201 5.6461 5.7954 5.6236 5.8166 0.40% 0.37% 3.37%

8×40 6.5422 6.4570 6.6289 6.4259 6.6586 0.48% 0.45% 3.56%

LB denotes lower bound, and UB upper bound.

δLB = |LB− LB∗|/LB∗. δUB = |UB− UB∗|/UB∗. wid/d0 = (UB− LB)/d0.

present method yields sharp results for large scale problems, and the accuracy remains

at the same level with the increase of problem size. The scalability of the method is

thus demonstrated.

Another useful information listed in Table 5.27 is the ratio of the present IFEA

solution to the midpoint solution. This ratio gives an estimation of the uncertainty

in the response resulting from the uncertainty in the parameter. The results show

reasonable values of the displacement variations in all problems, ranging from 2.64%

to 3.56%. For example, in the case of the eight-story forty-bay truss with 1288

elements, 1% uncertainty in the cross-sectional area and modulus of elasticity of each

element will result in 3.56% uncertainty in the vertical displacement at node D.
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5.4.2 Computational efficiency studies

Next, we investigate the computational efficiency of the present interval FEA. As

mentioned in Sec. 4.2.5.6, solving a linear interval equation involves two major steps:

(a) calculation of the preconditioning matrix; i.e., the inverse of the midpoint of the

interval coefficient matrix, and (b) the iteration process. Table 5.28 summarizes the

problem scale, iteration number and total computational time of each problem solved

by the present method. The table also contains iteration time and matrix inversion

time, as well as their ratios to the total computational time. All time measured is

CPU time. The computations were carried out on a PC with Intel Pentium4 2.4 GHz

CPU with 1GB RAM under Windows XP. According to the data in Table 5.28, the

total computational time, the iteration time and the matrix inversion time are plotted

as functions of the number of interval variables, shown in Fig. 5.8.

Table 5.28: CPU time for the truss analyses in example 4 with the present interval
FEA. (unit: seconds)

Truss (story× bay) nv Iterations ti tr t ti/t tr/t

3× 10 246 4 0.14 0.56 0.72 19.5% 78.4%

4× 12 392 5 0.45 2.06 2.56 17.7% 80.5%

4× 20 648 5 1.27 8.80 10.17 12.4% 86.5%

5× 22 890 5 2.66 21.48 24.38 10.9% 88.1%

5× 30 1210 6 6.09 53.17 59.70 10.2% 89.1%

6× 30 1452 6 11.08 89.06 100.77 11.0% 88.4%

6× 35 1692 6 15.11 140.23 156.27 9.7% 89.7%

6× 40 1932 6 20.11 208.64 230.05 8.7% 90.7%

7× 40 2254 6 32.53 323.14 358.76 9.1% 90.1%

8× 40 2576 7 48.454 475.72 528.45 9.2% 90.0%

nv: Number of interval variables. ti: Total CPU time for iterations.

tr: CPU time for matrix inverse calculation. t: Total computational CPU time.
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Figure 5.8: CPU time vs. problem scale for the present interval FEA.

It may be seen from Table 5.28 that the number of iterations needed to achieve con-

vergence are comparable for all the problems. As compared to the matrix inversion,

the iterations take much less time, ranging from 8.7% to 19.5% of total computational

time. As discussed in Sec. 4.2.5.6, the iteration equation (4.107) involves very sparse

matrices. The sparsity has been exploited in the implementation of the interval FEA

for better efficiency.

The results in Table 5.28 also indicate that the percentage of the CPU time spent

on calculating the matrix inverse ranges from 78.4% to 90.7%. For the majority of

the problems, the percentage is around 90%. In the present interval finite element

program, the inverse of the matrix is calculated by two steps: (a) perform Cholesky

decomposition for the matrix, and (b) employ the columns of the identity matrix as

multiple right hand sides (Press et al., 1992). The midpoint of the coefficient matrix

is stored using the skyline method to exploit the sparsity.

It is observed that the computational time increases approximately cubically with

the number of interval variables for the present interval FEA. A good fit to the data
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in Table 5.28 can be found with

t = 8.5× 10−8n2.8707
v

where t is the total computational CPU time and nv is the number of interval vari-

ables. Hence, the present interval FEA has an approximately cubic computational

complexity.

Table 5.29: Computational CPU time: a comparison of sensitivity analysis method
and the present interval FEA. (unit: seconds)

nv Sensitivity Analysis Present IFEA

246 1.06 0.72

392 6.23 2.56

648 64.05 10.17

890 269.77 24.38

1210 965.86 59.70

1452 2204.43 100.77

1692 4099.70 156.27

1932 7718.17 230.05

2254 14449.60 358.76

2576 32401.50 528.45

nv: numerber of interval variables

Table 5.29 compares the total computational time of the sensitivity analysis

method and the present method for this example. All analyses are carried out on

the same machine, a PC with Intel Pentium4 2.4GHz CPU with 1GB RAM under

Windows XP. According to the data in Table 5.29, Fig. 5.9 is plotted to show the

relationship between the computational time and the number of interval variables for

the two methods. Clearly, the present interval FEA is significantly superior to the

sensitivity analysis method. The advantage of the present method becomes more ob-

vious as the problem scale increases. For the example of the truss with 2576 interval

variables, 32401.5 seconds (9 hours) CPU time are needed for the sensitivity analysis

152



0

5000

10000

15000

20000

25000

30000

35000

0 500 1000 1500 2000 2500

Number of interval variables

C
P
U
 t
im
e 
(s
ec
)

Sensitivity analysis method

Present interval FEA

 

Figure 5.9: Computational CPU time vs. problem scale: a comparison of the sensi-
tivity analysis method and the present interval FEA.

method. While for the present interval FEA, it can be solved for 528.45 seconds (8.8

minutes). The advantage and efficiency of the present method are thus obvious.

5.5 Plate with Quarter-Circle Cutout

Consider the plate with quarter-circle cutout shown in Fig. 5.10. The plate has a

dimension of 0.1 m × 0.05 m with a thickness of 0.005 m, and the radius of the

circular cutout is 0.02 m. Let the Poisson’s ratio ν = 0.3. Uniformly distributed

load of 100 kN/m is applied to the right edge as shown in Fig. 5.10. The plate is

analyzed as a plane-stress problem. The six-node isoparametric quadratic triangle

element is used for the finite element analysis. There are three hundred and fifty-two

elements in the finite element mesh. The uniformly distributed edge load is converted

to consistent nodal loads in the analysis.

The modulus of elasticity of the plate is uncertain and varies over the whole area.

Two cases are considered for modelling its variations within the plate:

1. The modulus of elasticity varies independently over each element. For element i,

the modulus of elasticity is same within the element, but the value is unknown
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Figure 5.10: Plate with quarter-circle cutout.

and varies in an interval Ei. The uncertainty is assumed to be 1% for all

elements. That is, Ei = [199, 201] GPa, for i = 1, . . . , Ne where Ne is the

number of elements. In this example, Ne = 352. Thus 352 interval variables

are present in this case.

2. The plate has eight subdomains as shown in Fig. 5.11. The modulus of elas-

ticity varies independently over each subdomain. The elements in the same

subdomain have the same modulus of elasticity which is uncertain and varies in

an interval. The interval values used are Ei = [199, 201] GPa, for i = 1, . . . , 8.

Hence, eight interval variables are present in this case.
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Figure 5.11: Eight subdomains of the plate. Each subdomain has an independent
interval modulus of elasticity.

5.5.1 Case 1

In this case, the modulus of elasticity for each element varies independently in the

interval [199, 201] GPa. The present interval FEA is evaluated through comparison

with the results from a Monte Carlo sampling. 106 samples were made. Table 5.30

summarizes the results of selected displacements, the horizontal displacement at node

A (uA) and B (uB), and the vertical displacement at node E (vE), obtained by the

present interval FEA and the Monte Carlo sampling method. It can be seen that

the results obtained by the present method enclose those obtained by the Monte

Carlo sampling method. In fact, the Monte Carlo sampling method provides an

inner estimate of the response ranges, whereas the present interval FEA yields the

outer bounds of the response ranges. A comparison of the computed results by these

two methods concludes that the present interval FEA yields a sharp bound for the

displacements.

The bounds of stresses (σxx, σyy) of node F are given in Table 5.31. Node F is

shared by three elements. The stresses listed are average stresses. As seen in the

table, the interval FEA yields reasonable bounds for the stresses.
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Table 5.30: Bounds of selected displacements for the plate in Fig. 5.10, with 1%
uncertainty in each element’s modulus of elasticity. (unit: ×10−5 meter)

Method uA uA uB uB vE vE

Monte Carlo 1.19094 1.20081 1.25203 1.26168 −0.42638 −0.42238

Present IFEA 1.18768 1.20387 1.24907 1.26511 −0.42894 −0.41940

Table 5.31: Bounds of stress at node F of the plate in Fig. 5.10, with 1% uncertainty
in each element’s modulus of elasticity. (unit: MP)

Method σxx σxx σyy σyy

Monte Carlo 13.164 13.223 1.803 1.882

Present IFEA 12.699 13.690 1.592 2.090

5.5.2 Case 2

For this case, the plate is discretized into eight subdomains, and each subdomain

has an independent modulus of elasticity. Eight interval variables are present. For

comparison purposes, the combinatorial method is also used. Table 5.32 gives the

results of selected displacements, the horizontal displacement at node A (uA) and B

(uB), and the vertical displacement at node E (vE), obtained by the present interval

FEA and the combinatorial method. Table 5.33 lists the bounds of stresses (σxx, σyy)

of node F. As seen from the tables, the results obtained by the present interval FEA

sharply enclose those obtained by the combinatorial method.

Table 5.32: Bounds of selected displacements for the plate in Fig. 5.10, with 1%
uncertainty in each subdomain’s modulus of elasticity. (unit: ×10−5 meter)

Method uA uA uB uB vE vE

Combinatorial 1.19002 1.20197 1.25108 1.26365 −0.42689 −0.42183

Present IFEA 1.18819 1.20368 1.24952 1.26507 −0.42824 −0.42040

The displacement and stress results obtained by the present interval FEA in case

1 and case 2 are compared in Tables 5.34 and 5.35, respectively. As expected, wider

bounds are obtained in case 1 than in case 2. The reason for this is that Case 1
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Table 5.33: Bounds of stress at node F of the plate in Fig. 5.10, with 1% uncertainty
in each subdomain’s modulus of elasticity. (unit: MP)

Method σxx σxx σyy σyy

Combinatorial 13.158 13.230 1.797 1.885

Present IFEA 12.875 13.513 1.686 1.996

Table 5.34: Bounds of selected displacements for the plate in Fig. 5.10 . Comparison
of case 1 and case 2. (unit: ×10−5 meter)

uA uA uB uB vE vE

Case 1 1.18768 1.20387 1.24907 1.26511 -0.42894 -0.41940

Case 2 1.18819 1.20368 1.24952 1.26507 -0.42824 -0.42040

Table 5.35: Bounds of stress at node F of the plate in Fig. 5.10. Comparison of case
1 and case 2. (unit: MP)

σxx σxx σyy σyy

Case 1 12.699 13.690 1.592 2.090

Case 2 12.875 13.513 1.686 1.996

describes higher level of variations in the modulus of elasticity over the plate.
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5.6 Rectangular Plate

In this example a rectangular plate shown in Fig. 5.12 is considered. The plate has

a dimension of 0.1 m × 0.05 m with a thickness of 0.005 m. The Poisson’s ratio ν is

0.3. A uniformly distributed load of 100 kN/m is applied to the right edge. The plate

is analyzed as a plane-stress problem. The six-node isoparametric quadratic triangle

element is used for the finite element analysis. The modulus of elasticity of the plate

is uncertain and varies in the interval [196, 204] GPa. Two cases are considered for

modelling its space variations within the plate:

1. The modulus of elasticity varies independently in the interval [196, 204] GPa

over each element. In this case, the material mesh is the same as the finite

element mesh. To investigate the effect of the mesh on the result, six different

meshes are used in which the number of elements ranges from 36 to 324.

2. The plate has four subdomains as shown in Fig. 5.13. The modulus of elasticity

varies independently in the interval [196, 204] GPa over each subdomain. The

elements in the same subdomain have the same modulus of elasticity which is

uncertain and varies in an interval. In this case, the material mesh is different

than the finite element mesh.

5.6.1 Case 1

In this case, the modulus of elasticity for each element varies independently in the

interval [196, 204] GPa. The material mesh is the same as the finite element mesh.

Apparently, the computed result will be affected by the mesh used. A finer mesh

models a more inhomogeneous material property. Consequently, the uncertainty in

the response will increase. To investigate the effect of the mesh on the result, six

different meshes are considered in which the number of elements is 36, 100, 144, 196,

256, and 324, respectively. All the meshes are uniform. Table 5.36 summarizes the
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Figure 5.12: Rectangular plate.

Figure 5.13: Four subdomains of the plate. Each subdomain has an independent
interval modulus of elasticity.
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vertical displacement at node A (vA). The table also lists the midpoint solution vA0;

i.e., the deterministic solution obtained using the midpoint (nominal) values of the

interval parameters. The result is also plotted as a function of the number of elements,

shown in Fig.5.14.

The result verifies that a finer mesh results in a wider response range. In fact,

different meshes represent different problems. The analyst should carefully choose

the appropriate mesh based on the information available.

Table 5.36: Vertical displacement at node A in the plate of Fig. 5.12 (unit: 10−6 m).
Each element has an independent interval modulus of elasticity [196, 204] GPa.

Num. Ele. vA0 vA vA

36 −1.4900 −1.5569 −1.4231

100 −1.4936 −1.5825 −1.4047

144 −1.4946 −1.6003 −1.3889

196 −1.4953 −1.6251 −1.3656

256 −1.4959 −1.6623 −1.3295

324 −1.4963 −1.7248 −1.2679

vA0: midpoint solution.
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 Figure 5.14: Vertical displacement at node A in the plate of Fig. 5.12. Each element
has an independent interval modulus of elasticity [196, 204] GPa.
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5.6.2 Case 2

In this case, the plate is discretized into four subdomains (Fig. 5.13), and each sub-

domain has an independent modulus of elasticity [196, 204] GPa. The material mesh

is different than the finite element mesh. Two uniform meshes are considered with

144 and 256 elements, respectively. Table 5.37 summarizes the calculated vertical

displacement at node A. It can be seen that the results from these two meshes are

very close to each other. This illustrates that for the same material mesh, the interval

result is relatively insensitive to the finite element mesh, as long as the finite element

mesh is fine enough in the sense of the deterministic FEA.

Table 5.37: Vertical displacement at node A in the plate of Fig. 5.12 (unit: 10−6 m).
Each subdomain has an interval modulus of elasticity [196, 204] GPa.

Num. Ele. vA0 vA vA

144 −1.4946 −1.5722 −1.4170

256 −1.4959 −1.5777 −1.4141

vA0: midpoint solution.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

In this study, the interval approach is used to account for uncertainties in the geom-

etry, material and load parameters in finite element analysis for solid and structural

mechanics problems. The objective of this study is to develop a computationally ef-

ficient method for interval FEA which yields rigorous and sharp bounds on the range

of structural responses which may include nodal displacement, element nodal force,

or stress. To achieve rigorous results, interval arithmetic is used in the formulation

to guarantee an enclosure for the response ranges. The major difficulty associated

with interval computation is the dependence problem, which results in severe over-

estimation of the system response range. Thus, in the development of the present

method, particular attention is given to reduce the overestimation in the results due

to the dependence problem in the interval computation. This goal has been achieved

by developing an algorithm that consists of: (a) factorization of interval parameters

out of element stiffness matrix, (b) the Element-By-Element technique for element

assembly, (c) the penalty method and Lagrange multiplier method for imposition

of constraints to ensure the continuity of the EBE model, (d) application and en-

hancement of the standard fixed point iteration for solution of the interval structural

equations, and (e) symbolic manipulation of expressions to avoid dependence in the

interval computation. Further, special algorithms have been developed to calculate

sharp results for stresses and element nodal forces. In the developed method, most

sources of overestimation due to dependence problem have been eliminated. This

ensures the convergence of the fixed point iteration for problems with relatively large
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uncertainties. The present method is generally applicable to linear static interval

FEA, regardless of element type.

The present interval finite element formulation and the algorithm have been imple-

mented in a newly developed C++ computer program which is capable of analyzing

truss, beam and frame structures with interval material, geometry, and load parame-

ters. Material uncertainty and load uncertainty have also been incorporated in the

six-node isoparametric quadratic triangle element for plane stress and plane strain

problems.

Numerical examples are presented to evaluate the performance of the developed

method in the aspects of rigorousness, accuracy, scalability, and computational effi-

ciency. The following problems are considered:

1. A planar truss structure with uncertain axial stiffness. This example studies

how the accuracy of the present method is affected by the increase of uncertainty

in the parameters.

2. A two-span continuous beam with interval loads and interval bending stiffness.

3. A two-bay two-story planar frame structure under interval load, interval mod-

ulus of elasticity, interval cross-sectional area, and interval moment of inertia.

This example illustrates the capability of the present method to analyze frames

under all these types of interval parameters.

4. A series of truss structures with the number of interval variables ranging from

246 to 2576. This example demonstrates the capability of the present method

to handle problems with a large number of interval variables. The scalability

and the computational efficiency of the present method are examined.

5. A steel plate with quarter-circle cutout. The modulus of elasticity of the plate is

considered interval. This example demonstrates the application of the present

method on continuum problems.
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For each example, the performance of the present method is evaluated through com-

parison with some alternative methods (e.g., the combinatorial method, the sensitiv-

ity analysis method, the Monte Carlo sampling method). As discussed in Chapter 3,

these alternative methods yield inner (nonrigorous) bounds of the response ranges.

By comparing these inner bounds and the solution from the present method, one can

get an approximation for the accuracy of the present method.

In all the examples, it is observed that the results (displacement, element nodal

force, stress) obtained by the present interval FEA enclose those from the alternative

methods. This illustrates that the present method yields rigorous results which are

guaranteed to enclose the true response range.

Numerical examples demonstrate that the present method yields very sharp (ac-

curate) results for problems involving moderate uncertainty (no more than 5%) in

the material and geometry parameters. As the parameter uncertainty increases to a

relatively large level (5% to 10%), reasonable bounds can still be achieved. In the first

example when the truss has 1% uncertainty in each element’s cross-sectional area, the

relative difference between the displacement solution from the present method and

the one from the combinatorial method is within a range of 0.01% to 0.03%. The

relative difference of these two solutions is within a range of 0.35% to 0.77% when

the parameter uncertainty increases to 5%. As the parameter uncertainty increases

further to 10%, the relative difference of these two solutions is still within a reasonable

range, namely 1.80% to 4.01%.

The high accuracy of the present method has also been observed in other examples,

including in the fourth example which involves a large number of interval variables.

The scalability of the present method is demonstrated in the fourth example, in

which the number of interval variables considered increases from 246 to 2576. It

has been shown that the accuracy of the results remains at the same level with the

increase of the problem scale.
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Compared with the other methods (e.g., the combinatorial method, the sensi-

tivity analysis method, the Monte Carlo sampling method), the advantage of the

present method lies in not only its rigorousness, accuracy, and scalability, but also

its computational efficiency. The combinatorial method has exponential complexity

which limits its application to rather small problems. The Monte Carlo sampling

method requires a large number of deterministic analyses. The sensitivity analysis

method becomes increasingly inefficient as the number of interval variables increases.

Also, these methods result in only inner bounds of the response ranges. The present

method, however, can obtain the enclosures of the response ranges by just one inter-

val analysis. For instance, for the truss with 2576 interval variables presented in the

fourth example, 32401.5 seconds (9 hours) CPU time are needed for the sensitivity

analysis method, while the present method can solve the problem in 528.45 seconds

(8.8 minutes). Clearly, the efficiency of the present method is significantly superior

to the sensitivity analysis method.

In summary, the development and implementation of the present interval FEA

meets the need for fast, rigorous and accurate estimates of the system response ranges.

The capability of the present method for analysis of structural and solid problems

under interval uncertainty are illustrated. The present interval FEA represents an

elegant and efficient method to be used in engineering applications.
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6.2 Directions for Future Work

6.2.1 Improvement to the present interval FEA

The computational efficiency of the present interval FEA may be further improved. In

the present form, the interval structural equation is solved by the fixed point iteration,

with the preconditioning matrix chosen as the inverse of the midpoint matrix of the

interval coefficient matrix. The process for inverting the midpoint matrix involves

two steps: (a) perform Cholesky decomposition, and (b) employ the columns of the

identity matrix as multiple right hand sides (forward and backward substitution).

The interval coefficient matrix is very sparse, and so is its midpoint matrix. In the

present implementation, the sparsity of the midpoint matrix has only been exploited

in step (a) by using the skyline method. A high-efficiency algorithm has yet to be

developed for the forward and backward substitution with consideration of the matrix

sparsity.

Preconditioning a large sparse interval coefficient matrix with the inverse of its

midpoint matrix gives the sharpest solution in a general case. However, even when

the sparsity has been fully exploited, inverting a large sparse matrix involves a con-

siderable amount of computing. It is of interest to explore some other form of precon-

ditioning matrix which requires less computation. This study has not been addressed

in the present work and its consideration in the future is strongly recommended.

The developed interval FEA, in its present form does not address the uncertain

parameters described by interval functions. Implementation of this feature will im-

prove its ability to characterize uncertainties. For example, the cross-sectional area of

a non-prismatic bar is described by an interval function A(x) which is an n-th order

polynomial

A(x) = a0 + a1x + · · ·+ anx
n

where the coefficients ai are intervals. Future research could focus on extending

the present interval FEA so that it can address uncertainties described by interval

166



functions.

6.2.2 Reliability assessment using the interval FEA

As discussed in Chapter 1, the probabilistic and the interval approaches are suitable

for different types of uncertainties. Many practical problems, however, have to deal

with interval uncertainty and probabilistic uncertainty at the same time (Penmetsa

and Grandhi, 2002; Berleant et al., 2005). Thus the classic reliability analysis should

be reformulated to accept interval information. Some approaches have been proposed

to combine interval uncertainty and probabilistic uncertainty, such as the Dempster-

Shafer theory of evidence (Dempster, 1967; Shafer, 1976), random set theory (Kendall,

1974), and the probability-bounds analysis (Berleant, 1993; Ferson and Ginzburg,

1996). The mathematical analysis of these uncertainty descriptions can be built up

using a series of interval analyses. Future research could focus on combining these

approaches with the interval FEA to perform reliability assessment. Such a work will

broaden the objectivity of classic reliability analysis, and the interval uncertainty and

probabilistic uncertainty can both be accommodated.

6.2.3 Consideration of discretization error

In addition to the uncertainties associated with parameters, another important source

of error in FEA is the discretization error. This has not been addressed in the present

study. Interval analysis has been used to compute rigorous bounds on the solution

of ordinary and partial differential equations (Moore, 1979; Plum, 2001; Jackson and

Nedialkov, 2002). Future work can explore interval analysis for its potential to rigor-

ously bound the finite element discretization error.
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Fetz, T., Jäger, J., Köll, G., Lessmann, H., Oberguggenberger, M., and Stark, R.
(1999). “Fuzzy models in geotechnical engineering and construction management.”
Compu.-Aided Civ. Infrastruct. Engrg., 14, 93–106.

Freudenthal, A. M. (1972). “Introductory remarks.” Proc. Int. Conf. Structural Safety
and Reliability, A. M. Freudenthal, ed., Pergamon Press, Oxford. 5–6.

Gallagher, R. H. (1975). Finite element analysis fundamentals. Printice Hall, Engle-
wood Cliffs, N.J.

Ganzerli, S. and Pantelides, C. P. (1999). “Load and resistance convex models for
optimum design.” Struct. Optim., 17, 259–268.

Gay, D. M. (1982). “Solving interval linear equations.” SIAM J. Numer. Anal., 19(4),
858–870.

Gersem, H. D., Moens, D., desmet, W., and Vandepitte, D. (2004). “Interval and
fuzzy finite element analysis of mechanical structures with uncertain parameters.”
Proc. ISMA 2004, International Conference on Noise and Vibration Engineering,
Leuven, Belgium. 3009–3021.

Ghanem, R. G. and Spanos, P. D. (1991). Stochastic finite elements: a spectral
approach. Springer-Verlag, New York.

GTSTRUDL (2002). GSTRUDL User Guide. Computer Aided Structural Engineer-
ing Center, Georgia Institute of Technology, Atlanta, GA.

Guan, Z. and Lu, J. P. (1998). Numerical analysis. Higher Education Press, Beijing,
China.

Haldar, A. and Mahadevan, S. (2000). Reliability assessment using stochastic finite
element analysis. John Wiley & Sons, Chichester.

170



Hall, J., Rubio, E., and Anderson, M. G. (2004). “Random sets of probability mea-
sures in slope hydrology and stability analysis.” J. Appl. Math. Mech. in press.

Hansen, E. and Walster, G. W. (2003). Global optimization using interval analysis.
Marcel Dekker, Inc., New York.

Hargreaves, G. I. (2002). “Interval analysis in matlab.” Report No. 416, University
of Manchester.

Hayter, A. J. (2002). Probability and statistics for engineers and scientists. Duxbury,
2 edition.

Helton, J. C. and Burmaster, D. E. (1996). “Guest editorial: treatment of aleatory
and epistemic uncertainty in performance assessment for complex systems.” Reliab.
Engng. Syst. Saf., 54, 91–94.

Hora, S. C. (1996). “Aleatory and epistemic uncertainty in probability elicitation
with an example from hazardous waste management.” Reliab. Engng. Syst. Saf.,
54, 217–223.

Jackson, K. R. and Nedialkov, N. S. (2002). “Some recent advances in validated
methods for ivps for odes.” Appl. Numer. Math., 42, 269–284.

Jansson, C. (1991). “Interval linear system with symmetric matrices, skew-symmetric
matrices, and dependencies in the right hand side.” Computing, 46, 265–274.
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